POJ 2135 最小费用最大流 入门题
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 19207 | Accepted: 7441 |
Description
To show off his farm in the best way, he walks a tour that starts at his house, potentially travels through some fields, and ends at the barn. Later, he returns (potentially through some fields) back to his house again.
He wants his tour to be as short as possible, however he doesn't want to walk on any given path more than once. Calculate the shortest tour possible. FJ is sure that some tour exists for any given farm.
Input
* Lines 2..M+1: Three space-separated integers that define a path: The starting field, the end field, and the path's length.
Output
Sample Input
4 5
1 2 1
2 3 1
3 4 1
1 3 2
2 4 2
Sample Output
6
解析 题目是无向图 求两条最短路径的长度 ,两条路径不允许有相交边。其实就是求一条最短路,把边删掉,再找一条。其实可以转化为网络流来写。
无向图把我们建边要建两次ab,ba;ba,ab(模板可以有平行边) 把每个边的容量设为1 花费为边的长度。然后找两次增广路退出来的花费就是答案。
也可以建立超源点汇点 0,n+1 建立两条边 0—1 容量为2 花费为0 n—n+1 容量为2 花费为0 跑一边最小费用就是答案了
锦囊:
以下板子求的是最小费用最大流 如果要固定流量k 可以在增广的时候检查一下 在flow+a>=k 的时候只增广k-flow单位的流量,然后终止程序。同样有费用限制也一样。
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<queue>
using namespace std;
const int maxn=1e3+,mod=1e9+,inf=0x3f3f3f3f;
struct edge
{
int to,next,cap,flow,cost;
} edge[maxn*maxn];
int head[maxn],tol;
int pre[maxn],dis[maxn];
bool vis[maxn];
int N;
void init(int n)
{
N=n,tol=;
memset(head,-,sizeof(head));
}
void addedge(int u,int v,int cap,int cost)
{
edge[tol].to=v;
edge[tol].cap=cap;
edge[tol].flow=;
edge[tol].cost=cost;
edge[tol].next=head[u];
head[u]=tol++;
edge[tol].to=u;
edge[tol].cap=;
edge[tol].flow=;
edge[tol].cost=-cost;
edge[tol].next=head[v];
head[v]=tol++;
}
bool spfa(int s,int t)
{
queue<int> q;
for(int i=; i<=N; i++)
{
dis[i]=inf;
vis[i]=false;
pre[i]=-;
}
dis[s]=;
vis[s]=true;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for(int i=head[u]; i!=-; i=edge[i].next)
{
int v=edge[i].to;
if(edge[i].cap>edge[i].flow&&dis[v]>dis[u]+edge[i].cost)
{
dis[v]=dis[u]+edge[i].cost;
pre[v]=i;
if(!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
if(pre[t]==-) return false;
else return true;
}
int mincostflow(int s,int t,int &cost)
{
int flow=;
cost=;
while(spfa(s,t))
{
int Min=inf;
for(int i=pre[t]; i!=-; i=pre[edge[i^].to]) //更新流量
{
if(Min>edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
}
for(int i=pre[t]; i!=-; i=pre[edge[i^].to])
{
edge[i].flow+=Min;
edge[i^].flow-=Min;
cost+=edge[i].cost*Min;
}
flow+=Min;
// if(flow>=f)break; //达到想要的f直接弹出来
}
return flow;
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
init(n+);
for(int i=; i<m; i++)
{
int u,v,cap,cost;
scanf("%d%d%d",&u,&v,&cost);
addedge(u,v,,cost);
addedge(v,u,,cost);
}
addedge(,,,);
addedge(n,n+,,);
int ans,maxflow;
maxflow=mincostflow(,n+,ans);
printf("%d\n",ans);
}
}
POJ 2135 最小费用最大流 入门题的更多相关文章
- hdu 1533 Going Home 最小费用最大流 入门题
Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- poj 2135最小费用最大流
最小费用最大流问题是经济学和管理学中的一类典型问题.在一个网络中每段路径都有"容量"和"费用"两个限制的条件下,此类问题的研究试图寻找出:流量从A到B,如何选择 ...
- POJ 2135 最小费用最大流
题目链接 Farm Tour Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18961 Accepted: 7326 D ...
- POJ2135 最小费用最大流模板题
练练最小费用最大流 此外此题也是一经典图论题 题意:找出两条从s到t的不同的路径,距离最短. 要注意:这里是无向边,要变成两条有向边 #include <cstdio> #include ...
- 【网络流#2】hdu 1533 - 最小费用最大流模板题
最小费用最大流,即MCMF(Minimum Cost Maximum Flow)问题 嗯~第一次写费用流题... 这道就是费用流的模板题,找不到更裸的题了 建图:每个m(Man)作为源点,每个H(Ho ...
- 2018牛客网暑期ACM多校训练营(第五场) E - room - [最小费用最大流模板题]
题目链接:https://www.nowcoder.com/acm/contest/143/E 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...
- poj 3422(最小费用最大流)
题目链接:http://poj.org/problem?id=3422 思路:求从起点到终点走k次获得的最大值,最小费用最大流的应用:将点权转化为边权,需要拆点,边容量为1,费用为该点的点权,表示该点 ...
- POJ 2516 最小费用最大流
每一种货物都是独立的,分成k次最小费用最大流即可! 1: /** 2: 因为e ==0 所以 pe[v] pe[v]^1 是两条相对应的边 3: E[pe[v]].c -= aug; E[pe[v]^ ...
- POJ - 2195 最小费用最大流
题意:每个人到每个房子一一对应,费用为曼哈顿距离,求最小的费用 题解:单源点汇点最小费用最大流,每个人和房子对于建边 #include<map> #include<set> # ...
随机推荐
- javajsp,Servlet:Property 'Id' not found
avax.el.PropertyNotFoundException: Property 'Id' not found on type org.androidpn.server.model.CarSo ...
- Kotlin学习的一些笔记
Introduction 写在前面 关于本书 这本书适合你吗? 关于作者 介绍 什么是Kotlin? 我们通过Kotlin得到什么 准备工作 Android Studio 安装Kotlin插件 创建一 ...
- oracle适配器连接不上解决方案
Oracle适配器连接不上解决方案 作者:Vashon oracle 的Developer连接不上报错:listener does not currently know of SID given in ...
- Visual studio每次build自动增加版本号
关键词:visual studio,rc file,VS_VERSION_INFO,FILEVERSION,PRODUCTVERSION 目标:希望每次在vs中编译项目时,生成的可执行程序版本号自动+ ...
- XSS漏洞扫描经验分享
关于XSS漏洞扫描,现成的工具有不少,例如paros.Acunetix等等,最近一个项目用扫描工具没有扫出漏洞,但还是被合作方找出了几个漏洞.对方找出的漏洞位置是一些通过javascript.ajax ...
- IE8 window.open 不支持此接口 的问题解决
在使用vs2010调试代码时,突然出现 window.open 不支持此接口的提示,开始认为是不是vs的问题,后来上网查询说是系统问题.我不想重装系统,之后发现是IE的问题,使用其他浏览器浏览系统不会 ...
- vs2010 在函数级别设置优化
平时开发的时候,为了方便调试,visual studio 的Configuration 设置成Release. 同时为了事后调试,Optimization总是设置成Disabled.这样做是方便查看变 ...
- 最简单的教程:在Ubuntu操作系统里安装Docker
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...
- Image Is Everything LA2995
白书第一章例题6 构造.思维.几何. 分别从几个角度去看,有矛盾就删掉,最后遍历一下统计个数 方法证明:第一个方块肯定要删除.假设前k个必须删除,第k+1个矛盾出现,假如不删掉,矛盾将持续存在,故必须 ...
- Java中类,对象,方法的内存分配
Java中类,对象,方法的内存分配 以下针对引用数据类型: 在内存中,类是静态的概念,它存在于内存中的CodeSegment中. 当我们使用new关键字生成对象时,JVM根据类的代码,去堆内存中开辟一 ...