HDU - 3407 - String-Matching Automata
先上题目:
String-Matching Automata
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 215 Accepted Submission(s): 140
Σ is the input alphabet (a finite nonempty set of symbols).
S is a finite nonempty set of states.
s0 is an element in S designated as the initial state.
δ is a function δ: S × Σ → S known as the transition function.
F is a (possibly empty) subset of S whose elements are designated as the final states.
An FSA with the above description operates as follows:
At the beginning, the automaton starts in the initial state s0.
The automaton continuously reads symbols from its input, one symbol at a time, and transits between states according to the transition function δ. To be specific, let s be the current state and w the symbol just read, the automaton moves to the state given by δ(s, w).
When the automaton reaches the end of the input, if the current state belongs to F, the string consisting sequentially of the symbols read by the automaton is declared accepted, otherwise it is declared rejected.
Just as the name implies, a string-matching automaton is a FSA that is used for string matching and is very efficient: they examine each character exactly once, taking constant time per text character. The matching time used (after the automaton is built) is therefore Θ(n). However, the time to build the automaton can be large.
Precisely, there is a string-matching automaton for every pattern P that you search for in a given text string T. For a given pattern of length m, the corresponding automaton has (m + 1) states {q0, q1, …, qm}: q0 is the start state, qm is the only final state, and for each i in {0, 1, …, m}, if the automaton reaches state qi, it means the length of the longest prefix of P that is also a suffix of the input string is i. When we reaches state qm, it means P is a suffix of the currently input string, which suggest we find an occurrence of P.
The following graph shows a string-matching automaton for the pattern “ababaca”, and illustrates how the automaton works given an input string “abababacaba”.
Apparently, the matching process using string-matching automata is quite simple (also efficient). However, building the automaton efficiently seems to be tough, and that’s your task in this problem.
0
#include <cstdio>
#include <cstring>
#include <queue>
#define MAX 10002
using namespace std; struct Trie{
int next[MAX][],fail[MAX],end[MAX],num[MAX][];
int root,L; int newnode(){
for(int i=;i<;i++){ next[L][i]=-; num[L][i]=;}
end[L++]=;
return L-;
}
void init(){
L=; root=newnode();
} void insert(char buf[]){
int len=strlen(buf);
int now = root;
for(int i=;i<len;i++){
if(next[now][buf[i]-'a']==-){
next[now][buf[i]-'a']=newnode(); }
now=next[now][buf[i]-'a'];
}
end[now]++;
} void build(){
queue<int> Q;
fail[root]=root;
for(int i=;i<;i++){
if(next[root][i]==-) next[root][i]=root;
else{
fail[next[root][i]]=root;
Q.push(next[root][i]);
}
}
while(!Q.empty()){
int now=Q.front();
Q.pop();
for(int i=;i<;i++){
if(next[now][i]==-) next[now][i]=next[fail[now]][i];
else{
fail[next[now][i]]=next[fail[now]][i];
Q.push(next[now][i]);
}
}
}
} void print(char buf[]){
int len=strlen(buf);
int now=root;
for(int i=;i<=len;i++){
printf("%d",i);
for(int j=;j<;j++) printf(" %d",next[now][j]);
printf("\n");
now=next[now][buf[i]-'a'];
}
}
}; Trie ac;
char s[MAX]; int main()
{
//freopen("data.txt","r",stdin);
while(scanf("%s",s),strcmp(s,"")){
ac.init();
ac.insert(s);
ac.build();
ac.print(s);//printf("\n");
}
return ;
}
/*3407*/
HDU - 3407 - String-Matching Automata的更多相关文章
- Binary String Matching
问题 B: Binary String Matching 时间限制: 3 Sec 内存限制: 128 MB提交: 4 解决: 2[提交][状态][讨论版] 题目描述 Given two strin ...
- NYOJ之Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose a ...
- ACM Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
- 南阳OJ----Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
- Binary String Matching(kmp+str)
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
- Aho - Corasick string matching algorithm
Aho - Corasick string matching algorithm 俗称:多模式匹配算法,它是对 Knuth - Morris - pratt algorithm (单模式匹配算法) 形 ...
- [POJ] String Matching
String Matching Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4074 Accepted: 2077 D ...
- String Matching Content Length
hihocoder #1059 :String Matching Content Length 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 We define the ...
- HDU 3374 String Problem (KMP+最大最小表示)
HDU 3374 String Problem (KMP+最大最小表示) String Problem Time Limit: 2000/1000 MS (Java/Others) Memory ...
随机推荐
- 1051 复数乘法(C#)
一.题目内容如下: 复数可以写成 ( 的常规形式,其中 A 是实部,B 是虚部,i 是虚数单位,满足 1:也可以写成极坐标下的指数形式 (,其中 R 是复数模,P 是辐角,i 是虚数单位,其等价于三角 ...
- spring cloud config搭建说明例子(四)-补充配置文件
服务端 ConfigServer pom.xml <dependency> <groupId>org.springframework.cloud</groupId> ...
- 思维+multiset ZOJ Monthly, July 2015 - H Twelves Monkeys
题目传送门 /* 题意:n个时刻点,m次时光穿梭,告诉的起点和终点,q次询问,每次询问t时刻t之前有多少时刻点是可以通过两种不同的路径到达 思维:对于当前p时间,从现在到未来穿越到过去的是有效的值,排 ...
- USB接口大百科:看完你就分得清充电线了
http://tech.ifeng.com/a/20151116/41507221_0.shtml
- ora-20000 unable to analyze
ora-20000 unable to analyze 无法分析表 check: select * from wmsprdata.cmp3$88278表不存在. result:应该是系统自动任务2:0 ...
- VB.NET 小程序 4
Public Class Form1 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click ...
- 【hive】hive表很大的时候查询报错问题
线上hive使用环境出现了一个奇怪的问题,跑一段时间就报如下错误: FAILED: SemanticException MetaException(message:Exception thrown w ...
- 连接服务器的mysql
在服务器配置好Mysql 数据库,在客户端连接,报错: 解决方法: 1.在MySQL 数据库中修改user表,将host 中的localhoust 改为 %: 2.配置访问数据库的全选 根据需要配置权 ...
- [Windows Server 2012] SQL Server 备份和还原方法
★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:SQL S ...
- WinRT ListView间隔变色(二)
上文说到,WinRt中,我们不能在Style的Setter使用Binding.这个问题其实从SL5之前,一直都不可以.但是,为了使用强大的Binding,人们也一直想使用各种方法来达到Binding ...