HDU - 3407 - String-Matching Automata
先上题目:
String-Matching Automata
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 215 Accepted Submission(s): 140
Σ is the input alphabet (a finite nonempty set of symbols).
S is a finite nonempty set of states.
s0 is an element in S designated as the initial state.
δ is a function δ: S × Σ → S known as the transition function.
F is a (possibly empty) subset of S whose elements are designated as the final states.
An FSA with the above description operates as follows:
At the beginning, the automaton starts in the initial state s0.
The automaton continuously reads symbols from its input, one symbol at a time, and transits between states according to the transition function δ. To be specific, let s be the current state and w the symbol just read, the automaton moves to the state given by δ(s, w).
When the automaton reaches the end of the input, if the current state belongs to F, the string consisting sequentially of the symbols read by the automaton is declared accepted, otherwise it is declared rejected.
Just as the name implies, a string-matching automaton is a FSA that is used for string matching and is very efficient: they examine each character exactly once, taking constant time per text character. The matching time used (after the automaton is built) is therefore Θ(n). However, the time to build the automaton can be large.
Precisely, there is a string-matching automaton for every pattern P that you search for in a given text string T. For a given pattern of length m, the corresponding automaton has (m + 1) states {q0, q1, …, qm}: q0 is the start state, qm is the only final state, and for each i in {0, 1, …, m}, if the automaton reaches state qi, it means the length of the longest prefix of P that is also a suffix of the input string is i. When we reaches state qm, it means P is a suffix of the currently input string, which suggest we find an occurrence of P.
The following graph shows a string-matching automaton for the pattern “ababaca”, and illustrates how the automaton works given an input string “abababacaba”.

Apparently, the matching process using string-matching automata is quite simple (also efficient). However, building the automaton efficiently seems to be tough, and that’s your task in this problem.
0
#include <cstdio>
#include <cstring>
#include <queue>
#define MAX 10002
using namespace std; struct Trie{
int next[MAX][],fail[MAX],end[MAX],num[MAX][];
int root,L; int newnode(){
for(int i=;i<;i++){ next[L][i]=-; num[L][i]=;}
end[L++]=;
return L-;
}
void init(){
L=; root=newnode();
} void insert(char buf[]){
int len=strlen(buf);
int now = root;
for(int i=;i<len;i++){
if(next[now][buf[i]-'a']==-){
next[now][buf[i]-'a']=newnode(); }
now=next[now][buf[i]-'a'];
}
end[now]++;
} void build(){
queue<int> Q;
fail[root]=root;
for(int i=;i<;i++){
if(next[root][i]==-) next[root][i]=root;
else{
fail[next[root][i]]=root;
Q.push(next[root][i]);
}
}
while(!Q.empty()){
int now=Q.front();
Q.pop();
for(int i=;i<;i++){
if(next[now][i]==-) next[now][i]=next[fail[now]][i];
else{
fail[next[now][i]]=next[fail[now]][i];
Q.push(next[now][i]);
}
}
}
} void print(char buf[]){
int len=strlen(buf);
int now=root;
for(int i=;i<=len;i++){
printf("%d",i);
for(int j=;j<;j++) printf(" %d",next[now][j]);
printf("\n");
now=next[now][buf[i]-'a'];
}
}
}; Trie ac;
char s[MAX]; int main()
{
//freopen("data.txt","r",stdin);
while(scanf("%s",s),strcmp(s,"")){
ac.init();
ac.insert(s);
ac.build();
ac.print(s);//printf("\n");
}
return ;
}
/*3407*/
HDU - 3407 - String-Matching Automata的更多相关文章
- Binary String Matching
问题 B: Binary String Matching 时间限制: 3 Sec 内存限制: 128 MB提交: 4 解决: 2[提交][状态][讨论版] 题目描述 Given two strin ...
- NYOJ之Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose a ...
- ACM Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
- 南阳OJ----Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
- Binary String Matching(kmp+str)
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
- Aho - Corasick string matching algorithm
Aho - Corasick string matching algorithm 俗称:多模式匹配算法,它是对 Knuth - Morris - pratt algorithm (单模式匹配算法) 形 ...
- [POJ] String Matching
String Matching Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4074 Accepted: 2077 D ...
- String Matching Content Length
hihocoder #1059 :String Matching Content Length 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 We define the ...
- HDU 3374 String Problem (KMP+最大最小表示)
HDU 3374 String Problem (KMP+最大最小表示) String Problem Time Limit: 2000/1000 MS (Java/Others) Memory ...
随机推荐
- [NOIP2004]火星人
Description 人类终于登上了火星的土地并且见到了神秘的火星人.人类和火星人都无法理解对方的语言,但是我们的科学家发明了一种用数字交流的方法.这种交流方法是这样的,首先,火星人把一个非常大的数 ...
- 题解报告:poj 3669 Meteor Shower(bfs)
Description Bessie hears that an extraordinary meteor shower is coming; reports say that these meteo ...
- Python---查看安装路径
python是解释型脚本语言,在执行时,逐句解释执行,不需要进行预编译.但需要有自身的Python解释器. 所以在执行Python代码时,需要指定python解释器. 指定解释器方法: 在文件开头添加 ...
- redis+mysql读写方案
前言:在web服务端开发的过程中,redis+mysql是最常用的存储解决方案,mysql存储着所有的业务数据,根据业务规模会采用相应的分库分表.读写分离.主备容灾.数据库集群等手段.但是由于mysq ...
- Android 网络图片查看器与网页源码查看器
在AndroidManifest.xml里面先添加访问网络的权限: <uses-permission android:name="android.permission.INTERNET ...
- vscode常好用的插件以及几个快捷操作
使用方法,可以在官网中搜索需要的插件或者在VsCode的“”扩展“”中搜索需要的插件添加方法使用Ctrl+P, 输入 ext install xxxx ,搜索要安装的插件,点击安装按钮即可(各取所需插 ...
- (转)全文检索技术学习(三)——Lucene支持中文分词
http://blog.csdn.net/yerenyuan_pku/article/details/72591778 分析器(Analyzer)的执行过程 如下图是语汇单元的生成过程: 从一个Re ...
- JavaScipt30(第三个案例)(主要知识点:css变量)
承接上文 https://www.cnblogs.com/wangxi01/p/10641210.html,下面是第三个案例: 附上项目链接: https://github.com/wesbos/Ja ...
- ThinkPHP---框架介绍
(1)什么是框架? ①框架是一堆包含了常量.方法和类等代码集合: ②半成品应用,只包含了项目开发时的底层架构,并不包含业务逻辑: ③包含一些设计模式,例如单例模式,工厂模式,AR(Active Rec ...
- Python自学-1-基本概念问题
C语言适合开发那些追求运行速度.充分发挥硬件性能的程序. Python是用来编写应用程序的高级编程语言. Python提供了 第三方库 & 基础代码库(覆盖了网络.文件.GUI.数据库.文本等 ...