HDU - 3407 - String-Matching Automata
先上题目:
String-Matching Automata
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 215 Accepted Submission(s): 140
Σ is the input alphabet (a finite nonempty set of symbols).
S is a finite nonempty set of states.
s0 is an element in S designated as the initial state.
δ is a function δ: S × Σ → S known as the transition function.
F is a (possibly empty) subset of S whose elements are designated as the final states.
An FSA with the above description operates as follows:
At the beginning, the automaton starts in the initial state s0.
The automaton continuously reads symbols from its input, one symbol at a time, and transits between states according to the transition function δ. To be specific, let s be the current state and w the symbol just read, the automaton moves to the state given by δ(s, w).
When the automaton reaches the end of the input, if the current state belongs to F, the string consisting sequentially of the symbols read by the automaton is declared accepted, otherwise it is declared rejected.
Just as the name implies, a string-matching automaton is a FSA that is used for string matching and is very efficient: they examine each character exactly once, taking constant time per text character. The matching time used (after the automaton is built) is therefore Θ(n). However, the time to build the automaton can be large.
Precisely, there is a string-matching automaton for every pattern P that you search for in a given text string T. For a given pattern of length m, the corresponding automaton has (m + 1) states {q0, q1, …, qm}: q0 is the start state, qm is the only final state, and for each i in {0, 1, …, m}, if the automaton reaches state qi, it means the length of the longest prefix of P that is also a suffix of the input string is i. When we reaches state qm, it means P is a suffix of the currently input string, which suggest we find an occurrence of P.
The following graph shows a string-matching automaton for the pattern “ababaca”, and illustrates how the automaton works given an input string “abababacaba”.

Apparently, the matching process using string-matching automata is quite simple (also efficient). However, building the automaton efficiently seems to be tough, and that’s your task in this problem.
0
#include <cstdio>
#include <cstring>
#include <queue>
#define MAX 10002
using namespace std; struct Trie{
int next[MAX][],fail[MAX],end[MAX],num[MAX][];
int root,L; int newnode(){
for(int i=;i<;i++){ next[L][i]=-; num[L][i]=;}
end[L++]=;
return L-;
}
void init(){
L=; root=newnode();
} void insert(char buf[]){
int len=strlen(buf);
int now = root;
for(int i=;i<len;i++){
if(next[now][buf[i]-'a']==-){
next[now][buf[i]-'a']=newnode(); }
now=next[now][buf[i]-'a'];
}
end[now]++;
} void build(){
queue<int> Q;
fail[root]=root;
for(int i=;i<;i++){
if(next[root][i]==-) next[root][i]=root;
else{
fail[next[root][i]]=root;
Q.push(next[root][i]);
}
}
while(!Q.empty()){
int now=Q.front();
Q.pop();
for(int i=;i<;i++){
if(next[now][i]==-) next[now][i]=next[fail[now]][i];
else{
fail[next[now][i]]=next[fail[now]][i];
Q.push(next[now][i]);
}
}
}
} void print(char buf[]){
int len=strlen(buf);
int now=root;
for(int i=;i<=len;i++){
printf("%d",i);
for(int j=;j<;j++) printf(" %d",next[now][j]);
printf("\n");
now=next[now][buf[i]-'a'];
}
}
}; Trie ac;
char s[MAX]; int main()
{
//freopen("data.txt","r",stdin);
while(scanf("%s",s),strcmp(s,"")){
ac.init();
ac.insert(s);
ac.build();
ac.print(s);//printf("\n");
}
return ;
}
/*3407*/
HDU - 3407 - String-Matching Automata的更多相关文章
- Binary String Matching
问题 B: Binary String Matching 时间限制: 3 Sec 内存限制: 128 MB提交: 4 解决: 2[提交][状态][讨论版] 题目描述 Given two strin ...
- NYOJ之Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose a ...
- ACM Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
- 南阳OJ----Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
- Binary String Matching(kmp+str)
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
- Aho - Corasick string matching algorithm
Aho - Corasick string matching algorithm 俗称:多模式匹配算法,它是对 Knuth - Morris - pratt algorithm (单模式匹配算法) 形 ...
- [POJ] String Matching
String Matching Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4074 Accepted: 2077 D ...
- String Matching Content Length
hihocoder #1059 :String Matching Content Length 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 We define the ...
- HDU 3374 String Problem (KMP+最大最小表示)
HDU 3374 String Problem (KMP+最大最小表示) String Problem Time Limit: 2000/1000 MS (Java/Others) Memory ...
随机推荐
- linux Java环境变了配置
1. sudo /etc/profile 2.安装截图配置 输入javac 进行验证
- jsonp 监控简陋代码
url: window.location.href Agent: navigator.userAgent var tkInfo = { VisitUrl: window.location.href, ...
- [转]C语言常见错误总结1
指针与数组的对比c程序中,指针和数组在不少地方可以相互替换着用,让人产生一种错觉,以为两者是等价的 数组要么在静态存储区被创建(如全局数组),要么在栈上被创建.数组名对应着(而不是指向)一块内存,其地 ...
- moment.js 两个时间段的截取
var a = moment([2008, 9, 29]);var b = moment([2007, 0, 10]);console.log(a.diff(b,'months'));//‘month ...
- dive into python:模块的导入和搜索文件路径的配置
1.Python中导入模块:import sys:相当于Java中的导入包.类. 比如,我们导入sys模块,使用:import sys; 2.Python中调用函数的时候,会从默认配置的库文件夹中(s ...
- 最容易理解的HMM文章
wiki上一个比较好的HMM例子 分类 隐马尔科夫模型 HMM(隐马尔科夫模型)是自然语言处理中的一个基本模型,用途比较广泛,如汉语分词.词性标注及语音识别等,在NLP中占有很重要的地位.网上关于HM ...
- Java中PrintStream(打印输出流)
Java中PrintStream(打印输出流) PrintStream 是打印输出流,它继承于FilterOutputStream. PrintStream 是用来装饰其它输出流.它能为其他输出流 ...
- ASP.NET跨页面传值技巧[总结]
个人网站:http://www.51pansou.com .net视频下载:.net视频教程 .net源码下载:.net源码 关于页面传值的方法,我就我个人观点做了些总结,希望对大家有所帮助. 1. ...
- MySQL单表数据不超过500万:是经验数值,还是黄金铁律?
今天,探讨一个有趣的话题:MySQL 单表数据达到多少时才需要考虑分库分表?有人说 2000 万行,也有人说 500 万行.那么,你觉得这个数值多少才合适呢? 曾经在中国互联网技术圈广为流传着这么一个 ...
- spring aop 内部调用问题解决
方法1: 基于 proxy 的 spring aop 带来的内部调用问题可以使用 AopContext.currentProxy() 强转为当前的再调用就可以解决了 例如: 错误用法:public A ...