传送门:https://nanti.jisuanke.com/t/31462

本题是一个树上的问题:结点间路径问题。

给定一个有N×M个结点的网格,并给出结点间建立墙(即拆除边)的代价。花费最小的代价,使得每一对结点之间的路径唯一。给出Q次询问:每次询问一对结点的路径长度。

每一对结点之间存在路径,则图是连通的;路径唯一,则图是无环的。于是拆除边后的图是原图的一棵生成树。为使得拆除的代价尽可能小,这棵生成树应是最大生成树。通过Kruskal算法,可以求解最大生成树。

之后,即是询问树结点对的路径长度。这个问题可以通过LCA算法求解。

设结点u、v的LCA为结点k,即k=LCA(u,v),则dis(u,v)=dep[u]+dep[v]-2*dep[k]。此处通过倍增实现LCA。

参考程序如下:

#include <bits/stdc++.h>
using namespace std; #define MAX_N 300005 priority_queue<pair<int, pair<int, int> > > edge;
vector<int> adj[MAX_N]; //Union Find.
int fa[MAX_N]; void init_dset(int n)
{
for (int i = ; i < n; i++) fa[i] = i;
} int find(int u)
{
if (fa[u] == u) return u;
return fa[u] = find(fa[u]);
} void unite(int u, int v)
{
int fu = find(u), fv = find(v);
if (fu == fv) return;
fa[fu] = fv;
} bool same(int u, int v)
{
return find(u) == find(v);
} //LCA.
int pre[][MAX_N]; //Ancestor Nodes.
int dep[MAX_N]; //Depth of Nodes. void dfs(int u, int p)
{
pre[][u] = p;
for (int v : adj[u]) {
if (v != p) {
dep[v] = dep[u] + ;
dfs(v, u);
}
}
} void init_lca(int n)
{
dfs(, -);
for (int k = ; k < ; k++) {
for (int v = ; v < n; v++) {
if (pre[k][v]) pre[k + ][v] = pre[k][pre[k][v]];
}
}
} int lca(int u, int v)
{
if (dep[u] > dep[v]) swap(u, v);
for (int k = ; k < ; k++) {
if ((dep[v] - dep[u]) & ( << k)) v = pre[k][v];
}
if (u == v) return u;
for (int k = ; k >= ; k--) {
if (pre[k][u] != pre[k][v]) {
u = pre[k][u];
v = pre[k][v];
}
}
return pre[][u];
} int main(void)
{
ios::sync_with_stdio(false);
int n, m;
cin >> n >> m;
for (int i = ; i < n; i++) {
for (int j = ; j < m; j++) {
string s, t;
int a, b;
cin >> s >> a >> t >> b;
if (s[] == 'D') {
int u = i * m + j;
int v = (i + ) * m + j;
edge.push(make_pair(a, make_pair(u, v)));
}
if (t[] == 'R') {
int u = i * m + j;
int v = i * m + j + ;
edge.push(make_pair(b, make_pair(u, v)));
}
}
}
init_dset(n * m);
while (!edge.empty()) {
auto e = edge.top();
edge.pop();
int u = e.second.first;
int v = e.second.second;
if (!same(u, v)) {
unite(u, v);
adj[u].push_back(v);
adj[v].push_back(u);
}
}
init_lca(n * m);
int q;
cin >> q;
while (q--) {
int a, b, c, d;
cin >> a >> b >> c >> d;
a--; b--; c--; d--;
int u = a * m + b;
int v = c * m + d;
int k = lca(u, v);
cout << dep[u] + dep[v] - * dep[k] << endl;
}
}

ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer的更多相关文章

  1. ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)

    ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...

  2. ACM-ICPC 2018 徐州赛区网络预赛 J Maze Designer(最大生成树+LCA)

    https://nanti.jisuanke.com/t/31462 题意 一个N*M的矩形,每个格点到其邻近点的边有其权值,需要构建出一个迷宫,使得构建迷宫的边权之和最小,之后Q次查询,每次给出两点 ...

  3. ACM-ICPC 2018 徐州赛区网络预赛 J Maze Designer(最大生成树,倍增lca)

    https://nanti.jisuanke.com/t/31462 要求在一个矩形中任意选两个点都有唯一的通路,所以不会建多余的墙. 要求满足上述情况下,建墙的费用最小.理解题意后容易想到首先假设全 ...

  4. ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer 最大生成树 lca

    大概就是要每两个点 只能有一条路径,并且约束,最短的边用来砌墙,那么反之的意思就是最大的边用来穿过 故最大生成树 生成以后 再用lca计算树上两点间的距离 (当然防止生成树是一条链,可以用树的重心作为 ...

  5. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  6. 计蒜客 1460.Ryuji doesn't want to study-树状数组 or 线段树 (ACM-ICPC 2018 徐州赛区网络预赛 H)

    H.Ryuji doesn't want to study 27.34% 1000ms 262144K   Ryuji is not a good student, and he doesn't wa ...

  7. ACM-ICPC 2018 徐州赛区网络预赛 B(dp || 博弈(未完成)

    传送门 题面: In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl n ...

  8. ACM-ICPC 2018 徐州赛区网络预赛 B. BE, GE or NE

    In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl named &qu ...

  9. ACM-ICPC 2018 徐州赛区网络预赛 F. Features Track

    262144K   Morgana is learning computer vision, and he likes cats, too. One day he wants to find the ...

随机推荐

  1. mybatis中各种数据的映射类型

    Mybatis对应的java和数据库的数据类型,最后有图片 Mybatis                                  java                          ...

  2. Bug分支(转载)

    转自:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/00137602359178 ...

  3. Python机器学习算法 — 逻辑回归(Logistic Regression)

    逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型 ...

  4. bzoj 1725: [Usaco2006 Nov]Corn Fields牧场的安排【状压dp】

    压一维状态,转移时把符合条件的上一行加上 #include<iostream> #include<cstdio> using namespace std; const int ...

  5. json和Jsonp 使用总结(1)

    1.Json的使用 $.getJSON("subPreview", { jsonDatas: JSON.stringify(jsonData) }, function(data) ...

  6. android序列化(2)Parcelable与Parcel

    1.简介 Parcel  : 包裹 Android采用这个它封装消息数据.这个是通过IBinder通信的消息的载体.需要明确的是Parcel用来存放数据的是内存(RAM),而不是永久性介质(Nand等 ...

  7. Javascript DOM 编程艺术(第二版)读书笔记——DOM基础

    1.DOM是什么 D=document(文档) O=object(对象) M=Model(模型) DOM又称节点树 一些术语: parent(父)   child(子)   sibling(兄弟)   ...

  8. Spark学习之基础相关组件(1)

    Spark学习之基础相关组件(1) 1. Spark是一个用来实现快速而通用的集群计算的平台. 2. Spark的一个主要特点是能够在内存中进行计算,因而更快. 3. RDD(resilient di ...

  9. Asp.net MVC中文件上传的参数转对象的方法

    参照博友的.NET WebApi上传文件接口(带其他参数)实现文件上传并带参数,当需要多个参数时,不想每次都通过HttpContext.Request.Params去取值,就针对HttpRequest ...

  10. python自动化--语言基础四模块、文件读写、异常

    模块1.什么是模块?可以理解为一个py文件其实就是一个模块.比如xiami.py就是一个模块,想引入使用就在代码里写import xiami即可2.模块首先从当前目录查询,如果没有再按path顺序逐一 ...