paddle中新增layer
Implement C++ Class
The C++ class of the layer implements the initialization, forward, and backward part of the layer. It needs to derive the base class paddle::Layer, and it needs to override the following functions:
- constructor and destructor.
initfunction. It is used to initialize the parameters and settings.forward. It implements the forward part of the layer.backward. It implements the backward part of the layer.prefetch. It is utilized to determine the rows corresponding parameter matrix to prefetch from parameter server. You do not need to override this function if your layer does not need remote sparse update. (most layers do not need to support remote sparse update)
头文件:
namespace paddle {
/**
* A layer has full connections to all neurons in the previous layer.
* It computes an inner product with a set of learned weights, and
* (optionally) adds biases.
*
* The config file api is fc_layer.
*/
class FullyConnectedLayer : public Layer {
protected:
WeightList weights_;
std::unique_ptr<Weight> biases_;
public:
explicit FullyConnectedLayer(const LayerConfig& config)
: Layer(config) {}
~FullyConnectedLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
Weight& getWeight(int idx) { return *weights_[idx]; }
void prefetch();
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
};
} // namespace paddle
It defines the parameters as class variables. We use Weight class as abstraction of parameters. It supports multi-thread update. The details of this class will be described in details in the implementations.
weights_is a list of weights for the transformation matrices. The current implementation can have more than one inputs. Thus, it has a list of weights. One weight corresponds to an input.biases_is a weight for the bias vector.
The fully connected layer does not have layer configuration hyper-parameters. If there are some layer hyper-parameters, a common practice is to store it in LayerConfig& config, and put it into a class variable in the constructor.
The following code snippet implements the init function.
- First, every
initfunction must call theinitfunction of the base classLayer::init(layerMap, parameterMap);. This statement will initialize the required variables and connections for each layer. - The it initializes all the weights matrices $W$ . The current implementation can have more than one inputs. Thus, it has a list of weights.(当前layer的输入可能来自多个layer,每个layer对应一个weight)
- Finally, it initializes the bias.
bool FullyConnectedLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap); /* initialize the weightList */
CHECK(inputLayers_.size() == parameters_.size());
for (size_t i = ; i < inputLayers_.size(); i++) {
// Option the parameters
// 输入层的神经元数目
size_t height = inputLayers_[i]->getSize();
// 当前层的神经元数目
size_t width = getSize(); // create a new weight
if (parameters_[i]->isSparse()) {
CHECK_LE(parameters_[i]->getSize(), width * height);
} else {
CHECK_EQ(parameters_[i]->getSize(), width * height);
}
Weight* w = new Weight(height, width, parameters_[i]); // append the new weight to the list
weights_.emplace_back(w);
} /* initialize biases_ */
if (biasParameter_.get() != NULL) {
biases_ = std::unique_ptr<Weight>(new Weight(, getSize(), biasParameter_));
} return true;
}
The implementation of the forward part has the following steps.
- Every layer must call
Layer::forward(passType);at the beginning of itsforwardfunction. - Then it allocates memory for the output using
reserveOutput(batchSize, size);. This step is necessary because we support the batches to have different batch sizes.reserveOutputwill change the size of the output accordingly. For the sake of efficiency, we will allocate new memory if we want to expand the matrix, but we will reuse the existing memory block if we want to shrink the matrix. - Then it computes $\sum_i W_i x + b$ using Matrix operations。 getInput(i).value retrieve the matrix of the i-th input. Each input is a $batchSize×dim$ matrix, where each row represents an single input in a batch. For a complete lists of supported matrix operations, please refer to paddle/math/Matrix.h and paddle/math/BaseMatrix.h.
- Finally it applies the activation function using
forwardActivation();. It will automatically applies the corresponding activation function specifies in the network configuration.
void FullyConnectedLayer::forward(PassType passType) {
Layer::forward(passType);
/* malloc memory for the output_ if necessary */
// batchSize是样本数,size是神经元数目
int batchSize = getInput().getBatchSize();
int size = getSize();
{
// Settup the size of the output.
reserveOutput(batchSize, size);
}
MatrixPtr outV = getOutputValue();
// Apply the the transformation matrix to each input.
for (size_t i = ; i != inputLayers_.size(); ++i) {
auto input = getInput(i);
CHECK(input.value) << "The input of 'fc' layer must be matrix";
i == ? outV->mul(input.value, weights_[i]->getW(), , )
: outV->mul(input.value, weights_[i]->getW(), , );
}
/* add the bias-vector */
if (biases_.get() != NULL) {
outV->addBias(*(biases_->getW()), );
}
/* activation */ {
forwardActivation();
}
}
The implementation of the backward part has the following steps.
backwardActivation()computes the gradients of the activation. The gradients will be multiplies in place to the gradients of the output, which can be retrieved usinggetOutputGrad().- Compute the gradients of bias. Notice that we an use
biases_->getWGrad()to get the gradient matrix of the corresponding parameter. After the gradient of one parameter is updated, it must callgetParameterPtr()->incUpdate(callback);. This is utilize for parameter update over multiple threads or multiple machines.
- Then it computes the gradients of the transformation matrices and inputs, and it calls
incUpdatefor the corresponding parameter. This gives the framework the chance to know whether it has gathered all the gradient to one parameter so that it can do some overlapping work (e.g., network communication)
void FullyConnectedLayer::backward(const UpdateCallback& callback) {
/* Do derivation for activations.*/ {
// 计算本层网络的激活关于本层网络参数的偏导
backwardActivation();
}
if (biases_ && biases_->getWGrad()) {
// 计算loss函数关于本层网络偏差的梯度
biases_->getWGrad()->collectBias(*getOutputGrad(), );
biases_->getParameterPtr()->incUpdate(callback);
}
bool syncFlag = hl_get_sync_flag();
for (size_t i = ; i != inputLayers_.size(); ++i) {
/* Calculate the W-gradient for the current layer */
if (weights_[i]->getWGrad()) {
MatrixPtr input_T = getInputValue(i)->getTranspose();
MatrixPtr oGrad = getOutputGrad();
{
weights_[i]->getWGrad()->mul(input_T, oGrad, , );
}
}
/* Calculate the input layers error */
MatrixPtr preGrad = getInputGrad(i);
if (NULL != preGrad) {
MatrixPtr weights_T = weights_[i]->getW()->getTranspose();
preGrad->mul(getOutputGrad(), weights_T, , );
}
{
weights_[i]->getParameterPtr()->incUpdate(callback);
}
}
}
The prefetch function specifies the rows that need to be fetched from parameter server during training. It is only useful for remote sparse training. In remote sparse training, the full parameter matrix is stored distributedly at the parameter server. When the layer uses a batch for training, only a subset of locations of the input is non-zero in this batch. Thus, this layer only needs the rows of the transformation matrix corresponding to the locations of these non-zero entries. The prefetch function specifies the ids of these rows.
Most of the layers do not need remote sparse training function. You do not need to override this function in this case.
void FullyConnectedLayer::prefetch() {
for (size_t i = ; i != inputLayers_.size(); ++i) {
auto* sparseParam =
dynamic_cast<SparsePrefetchRowCpuMatrix*>(weights_[i]->getW().get());
if (sparseParam) {
MatrixPtr input = getInputValue(i);
sparseParam->addRows(input);
}
}
}
Finally, you can use REGISTER_LAYER(fc, FullyConnectedLayer); to register the layer. fc is the identifier of the layer, and FullyConnectedLayer is the class name of the layer.
namespace paddle {
REGISTER_LAYER(fc, FullyConnectedLayer);
}
If the cpp file is put into paddle/gserver/layers, it will be automatically added to the compilation list.
Implement Python Wrapper
Implementing Python wrapper allows us to use the added layer in configuration files. All the Python wrappers are in file python/paddle/trainer/config_parser.py. An example of the Python wrapper for fully connected layer is listed below. It has the following steps:
- Use
@config_layer('fc')at the decorator for all the Python wrapper class.fcis the identifier of the layer. - Implements
__init__constructor function. -
- It first call
super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)base constructor function.FCLayeris the Python wrapper class name, andfcis the layer identifier name. They must be correct in order for the wrapper to work. - Then it computes the size and format (whether sparse) of each transformation matrix as well as the size.
- It first call
- Implements
@config_layer('fc')
class FCLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
bias=True,
**xargs):
super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
psize = self.config.size * input_layer.size
dims = [input_layer.size, self.config.size]
format = self.inputs[input_index].format
sparse = format == "csr" or format == "csc"
if sparse:
psize = self.inputs[input_index].nnz
self.create_input_parameter(input_index, psize, dims, sparse, format)
self.create_bias_parameter(bias, self.config.size)
In network configuration, the layer can be specifies using the following code snippets. The arguments of this class are:
nameis the name identifier of the layer instance.typeis the type of the layer, specified using layer identifier.sizeis the output size of the layer.biasspecifies whether this layer instance has bias.inputsspecifies a list of layer instance names as inputs.
Layer(
name = "fc1",
type = "fc",
size = ,
bias = True,
inputs = [Input("pool3")]
)
You are also recommended to implement a helper for the Python wrapper, which makes it easier to write models. You can refer to python/paddle/trainer_config_helpers/layers.py for examples.
http://doc.paddlepaddle.org/doc/howto/dev/new_layer_en.html
paddle源码解析:
http://wiki.babel.baidu.com/twiki/bin/view/Main/Paddle%E6%BA%90%E7%A0%81%E5%89%96%E6%9E%90--Layer#2.2 backward函数
http://wiki.baidu.com/pages/viewpage.action?pageId=353372756
paddle中新增layer的更多相关文章
- html5中新增的form表单属性
html5中新增两个表单属性,分别autocomplete和novalidate属性 1.autocomplete属性 该属性用于控制自动完成功能的开启和关闭.可以设置表单或者input元素,有两个属 ...
- Bash 4.4 中新增的 ${parameter@operator} 语法
Bash 4.4 中新增了一种 ${...} 语法,长这样:${parameter@operator}.根据不同的 operator,它展开后的值可能是 parameter 这个参数的值经过某种转换后 ...
- 在 .NET 4.0 中使用 .NET 4.5 中新增的特性(CallerMemberNameAttribute/CallerFilePathAttribute/CallerLineNumberAttribute)
介绍 标题中所说的三个特性 CallerMemberNameAttribute / CallerFilePathAttribute / CallerLineNumberAttribute 我们统称为调 ...
- [转]在NopCommerce中新增一个Domain Model的步骤
本文转自:http://www.cnblogs.com/aneasystone/archive/2012/08/27/2659183.html 在NopCommerce中新增一个Domain Mode ...
- S5中新增的Array方法详细说明
ES5中新增的Array方法详细说明 by zhangxinxu from http://www.zhangxinxu.com 本文地址:http://www.zhangxinxu.com/wor ...
- ES5中新增的Array方法详细说明
一.前言-索引 ES5中新增的不少东西,了解之对我们写JavaScript会有不少帮助,比如数组这块,我们可能就不需要去有板有眼地for循环了. ES5中新增了写数组方法,如下: forEach (j ...
- AJAX-----13HTML5中新增的API---FormData
FormData 表单数据对象,这是在HTML5中新增的一个API,他能以表单对象做参数,自动的将表单的数据打包,当ajax发送数据是,发送FormData内的表单数据给后端即可 <!DOCTY ...
- SQL Server 2008中新增的 1.变更数据捕获(CDC) 和 2.更改跟踪
概述 1.变更数据捕获(CDC) 每一次的数据操作都会记录下来 2.更改跟踪 只会记录最新一条记录 以上两种的区别: http://blog.csdn.n ...
- 2dx解析cocosbuilder中使用layer时的缺陷
2dx解析cocosbuilder中使用layer时的缺陷 cocos2d-x 3.7 cocosbuilder中的layer通常会用到触摸属性: 但是在2dx解析布局文件的时候,却很多属性都没解析: ...
随机推荐
- Linux基础学习-Docker学习笔记
Docker安装 1 官方网站访问速度很慢,帮助文档 2 国内中文网站,帮助文档 [root@qdlinux ~]# yum remove docker \ docker-client \ docke ...
- 王小胖之 Base64编码/解码
使用场景:编码网址作为URL参数,简单编码或加密数据,下载地址生成或解析. 实现功能:BASE64在线编码和解码. 数据实例:王小胖好啊,王小胖顶呱呱!! ~~ english 123 !@#$%^& ...
- GET 方法和 POST方法区别
两种 HTTP 请求方法:GET 和 POST 在客户机和服务器之间进行请求-响应时,两种最常被用到的方法是:GET 和 POST. GET - 从指定的资源请求数据. POST - 向指定的资源提交 ...
- Leetcode 396.旋转函数
旋转函数 给定一个长度为 n 的整数数组 A . 假设 Bk 是数组 A 顺时针旋转 k 个位置后的数组,我们定义 A 的"旋转函数" F 为: F(k) = 0 * Bk[0] ...
- Helvetic Coding Contest 2017 online mirror (teams allowed, unrated)
G. Fake News (easy) time limit per test 1 second memory limit per test 256 megabytes input standard ...
- TOJ 2710: 过河 路径压缩
2710: 过河 Time Limit(Common/Java):1000MS/10000MS Memory Limit:65536KByteTotal Submit: 32 ...
- [BZOJ2342] [Shoi2011]双倍回文(manacher)
传送门 manacher...... 先跑一边manacher是必须的 然后枚举双倍回文串的对称轴x 把这个双倍回文串分成4段,w wR w wR 发现,只有当 y <= x + p[x] / ...
- BZOJ 3749: [POI2015]Łasuchy【动态规划】
Description 圆桌上摆放着n份食物,围成一圈,第i份食物所含热量为c[i]. 相邻两份食物之间坐着一个人,共有n个人.每个人有两种选择,吃自己左边或者右边的食物.如果两个人选择了同一份食物, ...
- 【CCF】棋局评估
博弈论极小极大搜索,记忆化+状压 #include<iostream> #include<cstdio> #include<string> #include< ...
- 【单调队列】bzoj 1407 [HAOI2007]理想的正方形
[题意] 给定一个n*m的矩阵,求所有大小为k*k的正方形中(最大值-最小值)的最小值 [思路] 先横着算出每一行的长度为k的窗口内的最大值,变成一个n*(m-k+1)的矩阵mx 再竖着算出每一列的长 ...