[USACO06JAN] 冗余路径 Redundant Paths
题目描述
In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择.
每对草场之间已经有至少一条路径.给出所有R(F-1≤R≤10000)条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量, 路径由若干道路首尾相连而成.两条路径相互分离,是指两条路径没有一条重合的道路.但是,两条分离的路径上可以有一些相同的草场. 对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路.
输入输出格式
输入格式:
Line 1: Two space-separated integers: F and R
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
输出格式:
Line 1: A single integer that is the number of new paths that must be built.
题目解析
先缩一下边双联通分量,就变成了一棵树。
显然,可以贪心的把度数为1的点连起来。
ans = 度数为1的点数量/2 向上取整。
因惰于判重,特判之。
Code
#include<iostream>
#include<cstdio>
#include<stack>
using namespace std; const int MAXN = + ;
const int MAXM = + ; struct Edge {
int nxt;
int to,from;
} l[MAXM<<]; int n,m;
int head[MAXN],cnt;
int low[MAXN],dfn[MAXN];
int index[MAXN],col[MAXN];
int tot,stamp,ans;
bool in[MAXN]; stack<int> S; inline void add(int x,int y) {
cnt++;
l[cnt].nxt = head[x];
l[cnt].to = y;
l[cnt].from = x;
head[x] = cnt;
return;
} void tarjan(int x,int from) {
low[x] = dfn[x] = ++stamp;
in[x] = true;
S.push(x);
for(int i = head[x];i;i = l[i].nxt) {
if(l[i].to == from) continue;
if(!dfn[l[i].to]) {
tarjan(l[i].to,x);
low[x] = min(low[x],low[l[i].to]);
} else if(in[l[i].to]) low[x] = min(low[x],dfn[l[i].to]);
}
if(dfn[x] == low[x]) {
tot++;
while(S.top() != x) {
col[S.top()] = tot;
in[S.top()] = false;
S.pop();
}
col[x] = tot;
in[x] = false;
S.pop();
}
return;
} int main() {
scanf("%d%d",&n,&m);
if(n == && m == ) {
puts("");
return ;
}
int x,y;
for(int i = ;i <= m;i++) {
scanf("%d%d",&x,&y);
add(x,y),add(y,x);
}
for(int i = ;i <= n;i++) {
if(!dfn[i]) tarjan(i,);
}
for(int i = ;i <= *m;i+=) {
if(col[l[i].to] == col[l[i].from]) continue;
else index[col[l[i].to]]++,index[col[l[i].from]]++;
}
for(int i = ;i <= tot;i++) {
if(index[i] == ) ans++;
}
printf("%d\n",(ans+)/);
return ;
}
[USACO06JAN] 冗余路径 Redundant Paths的更多相关文章
- Luogu2860 [USACO06JAN]冗余路径Redundant Paths
Luogu2860 [USACO06JAN]冗余路径Redundant Paths 给定一个连通无向图,求至少加多少条边才能使得原图变为边双连通分量 \(1\leq n\leq5000,\ n-1\l ...
- 洛谷 P2860 [USACO06JAN]冗余路径Redundant Paths 解题报告
P2860 [USACO06JAN]冗余路径Redundant Paths 题目描述 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们 ...
- 缩点【洛谷P2860】 [USACO06JAN]冗余路径Redundant Paths
P2860 [USACO06JAN]冗余路径Redundant Paths 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了 ...
- 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- luogu P2860 [USACO06JAN]冗余路径Redundant Paths
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1- ...
- 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- luogu P2860 [USACO06JAN]冗余路径Redundant Paths |Tarjan
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- 【luogu P2860 [USACO06JAN]冗余路径Redundant Paths】 题解
题目链接:https://www.luogu.org/problemnew/show/P2860 考虑在无向图上缩点. 运用到边双.桥的知识. 缩点后统计度为1的点. 度为1是有一条路径,度为2是有两 ...
- (精)题解 guP2860 [USACO06JAN]冗余路径Redundant Paths
(写题解不容易,来我的博客玩玩咯qwq~) 该题考察的知识点是边双连通分量 边双连通分量即一个无向图中,去掉一条边后仍互相连通的极大子图.(单独的一个点也可能是一个边双连通分量) 换言之,一个边双连通 ...
随机推荐
- 中国剩余定理模板&俄罗斯乘法
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){ if(!b){d=a;x=1LL;y=0LL;} else {ex_gcd(b,a%b,d, ...
- Swing手动进行最大化最小化
首先jdk的setExtendedState是有bug的,需要先重载JFrame的setExtendedState方法 /** * Fix the bug "jframe undecorat ...
- uboot中添加自己的命令【转】
本文转载自:http://blog.csdn.net/huanghai381/article/details/51206646 每个命令都是通过U_BOOT_CMD宏来定义的.这个宏定义了一个相关的结 ...
- 异常机制及throw与throws的区别(转)
异常机制及throw与throws的区别 分类: Java2008-11-14 16:08 9672人阅读 评论(5) 收藏 举报 exceptionstringjavafunclass编译器 Jav ...
- python 代码混淆工具汇总
pyminifier Pyminifier is a Python code minifier, obfuscator, and compressor. Note For the latest, co ...
- hdoj--5526--欧拉回路(欧拉回路)
欧拉回路 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
- E20171228-hm
traverse n. 穿过; 横贯,横切; 横木; [建] 横梁; vt. 通过; 横越,横贯; [法] 否认,反驳; [木工] 横刨;
- bzoj 1426: 收集邮票【期望dp】
我太菜了,看的hzwer的blog才懂 大概是设f[i]表示已经拥有了i张邮票后期望还要买的邮票数,这个转移比较简单是f[i]=f[i]*(i/n)+f[i+1]*((n-i)/n)+1 然后设g[i ...
- bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级【分层图+spfa】
至死不用dijskstra系列2333,洛谷上T了一个点,开了O2才过 基本想法是建立分层图,就是建k+1层原图,然后相邻两层之间把原图的边在上一层的起点与下一层的终点连起来,边权为0,表示免了这条边 ...
- P1128 [HNOI2001]求正整数
传送门 rqy是我们的红太阳没有它我们就会死 可以考虑dp,设\(dp[i][j]\)表示只包含前\(j\)个质数的数中,因子个数为\(i\)的数的最小值是多少,那么有转移方程 \[f[i][j]=m ...