[USACO06JAN] 冗余路径 Redundant Paths
题目描述
In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择.
每对草场之间已经有至少一条路径.给出所有R(F-1≤R≤10000)条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量, 路径由若干道路首尾相连而成.两条路径相互分离,是指两条路径没有一条重合的道路.但是,两条分离的路径上可以有一些相同的草场. 对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路.
输入输出格式
输入格式:
Line 1: Two space-separated integers: F and R
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
输出格式:
Line 1: A single integer that is the number of new paths that must be built.
题目解析
先缩一下边双联通分量,就变成了一棵树。
显然,可以贪心的把度数为1的点连起来。
ans = 度数为1的点数量/2 向上取整。
因惰于判重,特判之。
Code
#include<iostream>
#include<cstdio>
#include<stack>
using namespace std; const int MAXN = + ;
const int MAXM = + ; struct Edge {
int nxt;
int to,from;
} l[MAXM<<]; int n,m;
int head[MAXN],cnt;
int low[MAXN],dfn[MAXN];
int index[MAXN],col[MAXN];
int tot,stamp,ans;
bool in[MAXN]; stack<int> S; inline void add(int x,int y) {
cnt++;
l[cnt].nxt = head[x];
l[cnt].to = y;
l[cnt].from = x;
head[x] = cnt;
return;
} void tarjan(int x,int from) {
low[x] = dfn[x] = ++stamp;
in[x] = true;
S.push(x);
for(int i = head[x];i;i = l[i].nxt) {
if(l[i].to == from) continue;
if(!dfn[l[i].to]) {
tarjan(l[i].to,x);
low[x] = min(low[x],low[l[i].to]);
} else if(in[l[i].to]) low[x] = min(low[x],dfn[l[i].to]);
}
if(dfn[x] == low[x]) {
tot++;
while(S.top() != x) {
col[S.top()] = tot;
in[S.top()] = false;
S.pop();
}
col[x] = tot;
in[x] = false;
S.pop();
}
return;
} int main() {
scanf("%d%d",&n,&m);
if(n == && m == ) {
puts("");
return ;
}
int x,y;
for(int i = ;i <= m;i++) {
scanf("%d%d",&x,&y);
add(x,y),add(y,x);
}
for(int i = ;i <= n;i++) {
if(!dfn[i]) tarjan(i,);
}
for(int i = ;i <= *m;i+=) {
if(col[l[i].to] == col[l[i].from]) continue;
else index[col[l[i].to]]++,index[col[l[i].from]]++;
}
for(int i = ;i <= tot;i++) {
if(index[i] == ) ans++;
}
printf("%d\n",(ans+)/);
return ;
}
[USACO06JAN] 冗余路径 Redundant Paths的更多相关文章
- Luogu2860 [USACO06JAN]冗余路径Redundant Paths
Luogu2860 [USACO06JAN]冗余路径Redundant Paths 给定一个连通无向图,求至少加多少条边才能使得原图变为边双连通分量 \(1\leq n\leq5000,\ n-1\l ...
- 洛谷 P2860 [USACO06JAN]冗余路径Redundant Paths 解题报告
P2860 [USACO06JAN]冗余路径Redundant Paths 题目描述 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们 ...
- 缩点【洛谷P2860】 [USACO06JAN]冗余路径Redundant Paths
P2860 [USACO06JAN]冗余路径Redundant Paths 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了 ...
- 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- luogu P2860 [USACO06JAN]冗余路径Redundant Paths
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1- ...
- 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- luogu P2860 [USACO06JAN]冗余路径Redundant Paths |Tarjan
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- 【luogu P2860 [USACO06JAN]冗余路径Redundant Paths】 题解
题目链接:https://www.luogu.org/problemnew/show/P2860 考虑在无向图上缩点. 运用到边双.桥的知识. 缩点后统计度为1的点. 度为1是有一条路径,度为2是有两 ...
- (精)题解 guP2860 [USACO06JAN]冗余路径Redundant Paths
(写题解不容易,来我的博客玩玩咯qwq~) 该题考察的知识点是边双连通分量 边双连通分量即一个无向图中,去掉一条边后仍互相连通的极大子图.(单独的一个点也可能是一个边双连通分量) 换言之,一个边双连通 ...
随机推荐
- luogu1941 飞扬的小鸟
题目大意 游戏界面是一个长为n ,高为 m 的二维平面,其中有k 个管道(忽略管道的宽度).小鸟始终在游戏界面内移动.小鸟从游戏界面最左边任意整数高度位置出发,到达游戏界面最右边时,游戏完成.小鸟每个 ...
- RDA 多屏参流程
一.RDA MAKEFILE的本地变量 在介绍多屏参之前,先看一下./code/env.conf的包含过程,通过./code/Makefile.project加载,env.conf中所有的变量,都变为 ...
- 为了一个句号,写了好多行的代码——值!(html 表单的处理)
个人信息表 <span style="font-size:18px;"><!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML ...
- bzoj 1622: [Usaco2008 Open]Word Power 名字的能量【模拟】
模拟即可,注意包含可以是不连续的 方便起见读入的时候全转成小写 #include<iostream> #include<cstdio> using namespace std; ...
- bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】
因为是单调不降或单调不升,所以所有的bi如果都是ai中出现过的一定不会变差 以递增为例,设f[i][j]为第j段选第i大的高度,预处理出s[i][j]表示选第i大的时,前j个 a与第i大的值的差的绝对 ...
- [Swift通天遁地]一、超级工具-(11)使用EZLoadingActivity制作Loading加载等待动画
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- GoAhead4.1.0 开发总结一(移植)
环境 官方文档:https://www.embedthis.com/goahead/doc/ 源码下载: goahead-4.1.0-src.tgz 系统平台:Ubuntu 12.04.4 gcc v ...
- Linux安装PHP环境
简介: PHP(外文名:PHP: Hypertext Preprocessor,中文名:“超文本预处理器”)是一种通用开源脚本语言.语法吸收了C语言.Java和Perl的特点,利于学习,使用广泛,主要 ...
- 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 The Heaviest Non-decreasing Subsequence Problem
Let SS be a sequence of integers s_{1}s1, s_{2}s2, ......, s_{n}snEach integer is is associ ...
- 贪心 Codeforces Round #135 (Div. 2) C. Color Stripe
题目传送门 /* 贪心:当m == 2时,结果肯定是ABABAB或BABABA,取最小改变量:当m > 2时,当与前一个相等时, 改变一个字母 同时不和下一个相等就是最优的解法 */ #incl ...