洛谷—— P1450 [HAOI2008]硬币购物
P1450 [HAOI2008]硬币购物
硬币购物一共有$4$种硬币。面值分别为$c1,c2,c3,c4$。某人去商店买东西,去了$tot$次。每次带$di$枚$ci$硬币,买$si$的价值的东西。请问每次有多少种付款方法。
直接考虑有多少种方案数可行有点儿难,这时候就应该考虑容斥原理,即有多少人不可行,计算出总的方案数,容斥一下即可。
使用完全背包,计算总的方案数。
然后枚举每一种可能的情况,用总的方案数-第一枚硬币超过的方案数-第二枚。。。+第一枚和第二枚同时超过的方案数。。。以此类推
#include<bits/stdc++.h> #define N 1000000
#define LL long long
using namespace std; int c[],T,S,d[];
LL f[N]; int main()
{
for(int i=;i<=;i++) scanf("%d",&c[i]); f[]=;
for(int i=;i<=;i++)
for(int j=c[i];j<=N/+;j++)
f[j]+=f[j-c[i]]; scanf("%d",&T);
while(T--)
{
for(int i=;i<=;i++) scanf("%d",&d[i]);
scanf("%d",&S);
LL ans=f[S];
for(int k=,i=;i<=;i++){
LL now=S;k=;//注意,k一定要还原
for(int j=;j<=;j++){
if((<<(j-))&i) k^=,now-=(d[j]+)*c[j];
}
if(now>=) k?ans-=f[now]:ans+=f[now];
}
printf("%lld\n",ans);
} return ;
}
洛谷—— P1450 [HAOI2008]硬币购物的更多相关文章
- 洛谷P1450 [HAOI2008]硬币购物(背包问题,容斥原理)
洛谷题目传送门 我实在是太弱了,第一次正儿八经写背包DP,第一次领会如此巧妙的容斥原理的应用...... 对每次询问都做一遍多重背包,显然T飞,就不考虑了 关键就在于每次询问如何利用重复的信息 我这么 ...
- 洛谷P1450 [HAOI2008]硬币购物
题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一 ...
- 洛谷P1450 [HAOI2008]硬币购物 背包+容斥
无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...
- 【洛谷P1450】硬币购物
题目大意:给定 4 种面值的硬币和相应的个数,求购买 S 元商品的方案数是多少. 题解: 考虑没有硬币个数的限制的话,购买 S 元商品的方案数是多少,这个问题可以采用完全背包进行预处理. 再考虑容斥, ...
- P1450 [HAOI2008]硬币购物(完全背包+容斥)
P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...
- [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...
- 2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP)
2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP) https://www.luogu.com.cn/problem/P1450 题意: 共有 44 种硬币.面 ...
- P1450 [HAOI2008]硬币购物
题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. di,s<=100000 ...
- Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理
考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...
随机推荐
- expand_dims
tf.expand_dims | TensorFlow https://tensorflow.google.cn/api_docs/python/tf/expand_dims tf.expand_ ...
- 一张图轻松记住PHP的*类*以及private和protected的区别
上图概要的说了下php类的特性,类的方法同属性类似. 图中B类继承自A类,B是A的子类,$x和$y都是B的实例化对象. 1. 原型引用:[A:: . B:: ],仅限public stati ...
- ubuntu 16.04 Python Anaconda 安装
Python Anaconda 不同版本在官网上的位置:https://www.anaconda.com/download/#linux 进入官网=>Changelog=>Product ...
- maven pom 详细配置
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- "git rm" 和 "rm" 的区别(转载)
转自:http://yang3wei.github.io/blog/2013/02/03/git-rm-he-rm-de-qu-bie/ 这是一个比较肤浅的问题,但对于 git 初学者来说,还是有必要 ...
- php使用邮箱发送验证码
如果看着文字眼乏就去看看视频吧-> 如何注册腾讯企业邮箱 https://www.bilibili.com/video/av14351397/ 如何在项目中使用 https://www.bili ...
- Rabin_Karp(hash) HDOJ 1711 Number Sequence
题目传送门 /* Rabin_Karp:虽说用KMP更好,但是RK算法好理解.简单说一下RK算法的原理:首先把模式串的哈希值算出来, 在文本串里不断更新模式串的长度的哈希值,若相等,则找到了,否则整个 ...
- Android 性能优化(27)*zipalign让apk数据对齐,运行更快。
1.zipalign 简介 zipalign is an archive alignment tool that provides important optimization to Android ...
- vue+elementUI table篇
1.table内容展示 <el-table stripe :key='tableKey' header-cell-class-name="bindonce" :data=&q ...
- 283 Move Zeroes 移动零
给定一个数组 nums, 编写一个函数将所有 0 移动到它的末尾,同时保持非零元素的相对顺序.例如, 定义 nums = [0, 1, 0, 3, 12],调用函数之后, nums 应为 [1, 3, ...