Sightseeing Cows

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi(1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

Output

* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

Sample Output

6.00
题意:求解一个图上的环上点权和除边权和最大值
sigma(val[i])/sigma(w[i])最大
和求最优比率生成树类似 sigma(val[i])/sigma(w[i])>=x;
-->sigma(val[i]-w[i]*x)>=0;
由于题目说的是图上的环 我们可以转化成图上的负权环 用spfa求解
如何转换负权环,我们将u-v边的边权变为x*edge[i].w-val[u];
所以在二分的时候 跑spfa判断是否是负环 是的话则l=mid;否则r=mid;
 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<cstring>
#include<map>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<algorithm>
#include<string.h>
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const int INF=0x3f3f3f3f;
const double eps=0.000001;
const int N=+;
const ll mod=1e9+;
int head[N];
int tot;
struct node{
int to,next;
int w;
}edge[N<<];
int vis[N];
double dis[N];
int val[N];
int num[N];
void init(){
memset(head,-,sizeof(head));
tot=;
}
void add(int u,int v,int w){
edge[tot].to=v;
edge[tot].next=head[u];
edge[tot].w=w;
head[u]=tot++;
}
int n,m;
int spfa(double x){
memset(vis,,sizeof(vis));
memset(num,,sizeof(num));
for(int i = ;i<=n;i++)dis[i]=1e15;
queue<int>q;
q.push();
dis[]=;
num[]++;
vis[]=;
while(q.empty()==){
int u=q.front();
q.pop();
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
int w=edge[i].w;
if(dis[u]+w*x-val[u]<dis[v]){
dis[v]=dis[u]+x*w-val[u];
if(vis[v]==){
q.push(v);
vis[v]=;
num[v]++;
if(num[v]>n)return ;//存在负权环
}
}
}
}
return ;
}
int main(){
init();
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&val[i]);
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
//add(v,u,w);
}
double low=0.0;
double high=;
double ans=;
while(low+eps<high){
double mid=(low+high)/2.0;
if(spfa(mid)){
ans=mid;
low=mid;
}else{
high=mid;
}
}
printf("%.2f\n",ans);
}
/*
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
*/

 

poj 3621(最优比率环)的更多相关文章

  1. poj 3621(最优比率环)

    题目链接:http://poj.org/problem?id=3621 思路:之前做过最小比率生成树,也是属于0/1整数划分问题,这次碰到这道最优比率环,很是熟悉,可惜精度没控制好,要不就是wa,要不 ...

  2. POJ 3621-Sightseeing Cows-最优比率环|SPFA+二分

    最优比率环问题.二分答案,对于每一个mid,把节点的happy值归类到边上. 对于每条边,用mid×weight减去happy值,如果不存在负环,说明还可以更大. /*---------------- ...

  3. POJ 3621 最优比率生成环

    题意:      让你求出一个最优比率生成环. 思路:      又是一个01分化基础题目,直接在jude的时候找出一个sigma(d[i] * x[i])大于等于0的环就行了,我是用SPFA跑最长路 ...

  4. Sightseeing Cows(最优比率环)

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8915   Accepted: 3000 ...

  5. [转]01分数规划算法 ACM 二分 Dinkelbach 最优比率生成树 最优比率环

    01分数规划 前置技能 二分思想最短路算法一些数学脑细胞? 问题模型1 基本01分数规划问题 给定nn个二元组(valuei,costi)(valuei,costi),valueivaluei是选择此 ...

  6. 【poj3621】最优比率环

    题意: 给定n个点,每个点有一个开心度F[i],每个点有m条单向边,每条边有一个长度d,要求一个环,使得它的 开心度的和/长度和 这个比值最大.n<=1000,m<=5000 题解: 最优 ...

  7. poj 3621最优比例生成环(01分数规划问题)

    /* 和求最小生成树差不多 转载思路:http://www.cnblogs.com/wally/p/3228171.html 思路:之前做过最小比率生成树,也是属于0/1整数划分问题,这次碰到这道最优 ...

  8. POJ 3621:Sightseeing Cows(最优比率环)

    http://poj.org/problem?id=3621 题意:有n个点m条有向边,每个点有一个点权val[i],边有边权w(i, j).找一个环使得Σ(val) / Σ(w)最大,并输出. 思路 ...

  9. POJ 3621 Sightseeing Cows (最优比率环 01分数划分)

    题意: 给定L个点, P条边的有向图, 每个点有一个价值, 但只在第一经过获得, 每条边有一个花费, 每次经过都要付出这个花费, 在图中找出一个环, 使得价值之和/花费之和 最大 分析: 这道题其实并 ...

随机推荐

  1. ORACLE审计小结

    ORACLE审计小结 1.什么是审计 审计(Audit)用于监视用户所执行的数据库操作,并且Oracle会将审计跟踪结果存放到OS文件(默认位置为$ORACLE_BASE/admin/$ORACLE_ ...

  2. 搭桥(codevs 1002)

    题目描述 Description 有一矩形区域的城市中建筑了若干建筑物,如果某两个单元格有一个点相联系,则它们属于同一座建筑物.现在想在这些建筑物之间搭建一些桥梁,其中桥梁只能沿着矩形的方格的边沿搭建 ...

  3. 【存储过程】MySQL存储过程/存储过程与自定义函数的区别

    ---------------------------存储过程-------------------- 语法: 创建存储过程: CREATE [definer = {user|current_user ...

  4. CSS font-family 属性

    CSS font-family 属性 实例 为段落设置字体: p { font-family:"Times New Roman",Georgia,Serif; } 亲自试一试 浏览 ...

  5. ZOJ 2770_Burn the Linked Camp

    题意: 给定每个兵营的最大容量,以及第i到第j个兵营至少有多少个士兵,问所有兵营一共至少有多少个士兵? 分析: 差分约束系统,注意 第i到第j至少有k个 第i到第j最多有最大容量之和个 每个兵营至少有 ...

  6. cogs——1364. 聚会

    1364. 聚会 ★   输入文件:partyb.in   输出文件:partyb.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 小S想要从某地出发去同学k的家中参加 ...

  7. 具体解说Android图片下载框架UniversialImageLoader之内存缓存(三)

    前面的两篇文章着重介绍的是磁盘缓存,这篇文章主要是解说一下内存缓存.对于内存缓存.也打算分两篇文章来进行解说.在这一篇文章中,我们主要是关注三个类, MemoryCache.BaseMemoryCac ...

  8. Hadoop 知识

    Map Reduce & YARN 简介 Apache Hadoop 是一个开源软件框架,可安装在一个商用机器集群中,使机器可彼此通信并协同工作,以高度分布式的方式共同存储和处理大量数据.最初 ...

  9. Android内存泄露之开篇

    先来想这三个问题 内存泄露是怎么回事 内存会泄露的原因 避免内存泄露 1.内存泄露怎么回事 一个程序中,已经不须要使用某个对象,可是由于仍然有引用指向它垃圾回收器就无法回收它,当然该对象占用的内存就无 ...

  10. (源代码分析)Android-Universal-Image-Loader (图片异步载入缓存库)的使用配置

    转载请注明出处:http://blog.csdn.net/u011733020 前言: 在Android开发中,对于图片的载入能够说是个老生常谈的问题了,图片载入是一个比較坑的地方.处理不好,会有各种 ...