Sightseeing Cows

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi(1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

Output

* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

Sample Output

6.00
题意:求解一个图上的环上点权和除边权和最大值
sigma(val[i])/sigma(w[i])最大
和求最优比率生成树类似 sigma(val[i])/sigma(w[i])>=x;
-->sigma(val[i]-w[i]*x)>=0;
由于题目说的是图上的环 我们可以转化成图上的负权环 用spfa求解
如何转换负权环,我们将u-v边的边权变为x*edge[i].w-val[u];
所以在二分的时候 跑spfa判断是否是负环 是的话则l=mid;否则r=mid;
 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<cstring>
#include<map>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<algorithm>
#include<string.h>
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const int INF=0x3f3f3f3f;
const double eps=0.000001;
const int N=+;
const ll mod=1e9+;
int head[N];
int tot;
struct node{
int to,next;
int w;
}edge[N<<];
int vis[N];
double dis[N];
int val[N];
int num[N];
void init(){
memset(head,-,sizeof(head));
tot=;
}
void add(int u,int v,int w){
edge[tot].to=v;
edge[tot].next=head[u];
edge[tot].w=w;
head[u]=tot++;
}
int n,m;
int spfa(double x){
memset(vis,,sizeof(vis));
memset(num,,sizeof(num));
for(int i = ;i<=n;i++)dis[i]=1e15;
queue<int>q;
q.push();
dis[]=;
num[]++;
vis[]=;
while(q.empty()==){
int u=q.front();
q.pop();
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
int w=edge[i].w;
if(dis[u]+w*x-val[u]<dis[v]){
dis[v]=dis[u]+x*w-val[u];
if(vis[v]==){
q.push(v);
vis[v]=;
num[v]++;
if(num[v]>n)return ;//存在负权环
}
}
}
}
return ;
}
int main(){
init();
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&val[i]);
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
//add(v,u,w);
}
double low=0.0;
double high=;
double ans=;
while(low+eps<high){
double mid=(low+high)/2.0;
if(spfa(mid)){
ans=mid;
low=mid;
}else{
high=mid;
}
}
printf("%.2f\n",ans);
}
/*
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
*/

 

poj 3621(最优比率环)的更多相关文章

  1. poj 3621(最优比率环)

    题目链接:http://poj.org/problem?id=3621 思路:之前做过最小比率生成树,也是属于0/1整数划分问题,这次碰到这道最优比率环,很是熟悉,可惜精度没控制好,要不就是wa,要不 ...

  2. POJ 3621-Sightseeing Cows-最优比率环|SPFA+二分

    最优比率环问题.二分答案,对于每一个mid,把节点的happy值归类到边上. 对于每条边,用mid×weight减去happy值,如果不存在负环,说明还可以更大. /*---------------- ...

  3. POJ 3621 最优比率生成环

    题意:      让你求出一个最优比率生成环. 思路:      又是一个01分化基础题目,直接在jude的时候找出一个sigma(d[i] * x[i])大于等于0的环就行了,我是用SPFA跑最长路 ...

  4. Sightseeing Cows(最优比率环)

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8915   Accepted: 3000 ...

  5. [转]01分数规划算法 ACM 二分 Dinkelbach 最优比率生成树 最优比率环

    01分数规划 前置技能 二分思想最短路算法一些数学脑细胞? 问题模型1 基本01分数规划问题 给定nn个二元组(valuei,costi)(valuei,costi),valueivaluei是选择此 ...

  6. 【poj3621】最优比率环

    题意: 给定n个点,每个点有一个开心度F[i],每个点有m条单向边,每条边有一个长度d,要求一个环,使得它的 开心度的和/长度和 这个比值最大.n<=1000,m<=5000 题解: 最优 ...

  7. poj 3621最优比例生成环(01分数规划问题)

    /* 和求最小生成树差不多 转载思路:http://www.cnblogs.com/wally/p/3228171.html 思路:之前做过最小比率生成树,也是属于0/1整数划分问题,这次碰到这道最优 ...

  8. POJ 3621:Sightseeing Cows(最优比率环)

    http://poj.org/problem?id=3621 题意:有n个点m条有向边,每个点有一个点权val[i],边有边权w(i, j).找一个环使得Σ(val) / Σ(w)最大,并输出. 思路 ...

  9. POJ 3621 Sightseeing Cows (最优比率环 01分数划分)

    题意: 给定L个点, P条边的有向图, 每个点有一个价值, 但只在第一经过获得, 每条边有一个花费, 每次经过都要付出这个花费, 在图中找出一个环, 使得价值之和/花费之和 最大 分析: 这道题其实并 ...

随机推荐

  1. awk输出指定列

    awk '{print $0} file' #打印所有列awk '{print $1}' file #打印第一列 awk '{print $1, $3}' file #打印第一和第三列 cat fil ...

  2. python3.x Day6 多线程

    线程???进程????区别???何时使用??? 进程:是程序以一个整体的形式暴露给操作系统管理,里边包含了对各种资源的调用,内存的使用,对各种资源的管理的集合,这就叫进程 线程:是操作系统最小的调度单 ...

  3. LeetCode 122. Best Time to Buy and Sell Stock II (stock problem)

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. MySQL中间件之ProxySQL_读写分离/查询重写配置

    MySQL中间件之ProxySQL_读写分离/查询重写配置 Posted on 2016-12-25 by mark blue, mark Leave a comment MySQL 1.闲扯几句 读 ...

  5. topcoder SRM 639 div2

    见这里 http://ygdtc.sinaapp.com/?p=257

  6. msp430入门学习10

    msp430的定时器--看门狗 msp430入门学习

  7. POJ 3468_A Simple Problem with Integers(树状数组)

    完全不知道该怎么用,看书稍微懂了点. 题意: 给定序列及操作,求区间和. 分析: 树状数组可以高效的求出连续一段元素之和或更新单个元素的值.但是无法高效的给某一个区间的所有元素同时加个值. 不能直接用 ...

  8. .net 程序集保护与破解

    一.保护方法(强签名.混淆.加壳) 强名称是由程序集的标识加上公钥和数字签名组成的.其中,程序集的标识包括简单文本名称.版本号.区域性信息(如果提供的话).语言文化信息.处理器架构信息.强名称是使用相 ...

  9. Servlet处理日期

    以下内容引用自http://wiki.jikexueyuan.com/project/servlet/handling-date.html: 使用Servlet的最重要的优势之一是可以使用核心Java ...

  10. DTRACE简介(1)

    https://blogs.oracle.com/swan/entry/dtrace%E7%AE%80%E4%BB%8B By samwan on 三月 20, 2007 记得几年前看过一部美国大片叫 ...