bzoj-1018 SHOI-2008 堵塞的交通traffic

参考博客:https://www.cnblogs.com/MashiroSky/p/5973686.html

题目大意:有一天,由于某种穿越现象作用,你来到了传说中的小人国。小人国的布局非常奇特,整个国家的交通系统可以被看成是一个2行C列的矩形网格,网格上的每个点代表一个城市,相邻的城市之间有一条道路,所以总共有2C个城市和3C-2条道路。 小人国的交通状况非常槽糕。有的时候由于交通堵塞,两座城市之间的道路会变得不连通,直到拥堵解决,道路才会恢复畅通。初来咋到的你决心毛遂自荐到交通部某份差事,部长听说你来自一个科技高度发达的世界,喜出望外地要求你编写一个查询应答系统,以挽救已经病入膏肓的小人国交通系统。 小人国的交通部将提供一些交通信息给你,你的任务是根据当前的交通情况回答查询的问题。交通信息可以分为以下几种格式:

  Close r1 c1 r2 c2:相邻的两座城市(r1,c1)和(r2,c2)之间的道路被堵塞了;

  Open r1 c1 r2 c2:相邻的两座城市(r1,c1)和(r2,c2)之间的道路被疏通了;

  Ask r1 c1 r2 c2:询问城市(r1,c1)和(r2,c2)是否连通。如果存在一条路径使得这两条城市连通,则返回Y,否则返回N;

数据范围:$0\le C\le 10^5$,$1\le Number_{message} \le 10^5$。


想法

哇哦。。。

这题真的能想出来?

我们用线段树维护一个列在$(l,r)$之间的这么$r-l+1$个方格的连通性。

维护的信息如下图:

然后如果在同一行的话同理。

现在,假设从左到右,从上到下,矩阵的四个角依次命名为$s1$,$s2$,$s3$,$s4$。

我们就维护

$U$:第一行的$mid$和$mid+1$是否连通。

$D$:第二行的$mid$和$mid+1$是否连通。

$l$:$s1$和$s3$是否连通。

$r$:$s2$和$s4$是否连通。

$u$:$s1$和$s2$是否连通。

$d$:$s3$和$s4$是否连通。

$q$:$s1$和$s4$是否连通。

$p$:$s2$和$s3$是否连通。

之后暴力维护就好了。

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
#define N 100010
using namespace std;
struct Node
{
bool U,D,l,r,u,d,p,q;
}a[N<<2];
inline void pushup(Node &p,Node l,Node r)
{
p.l = l.l | (l.u & p.U & r.l & p.D & l.d);
p.r = r.r | (r.u & p.U & l.r & p.D & r.d);
p.u = (l.u & p.U & r.u) | (l.q & p.D & r.p);
p.d = (l.d & p.D & r.d) | (l.p & p.U & r.q);
p.q = (l.u & p.U & r.q) | (l.q & p.D & r.d);
p.p = (l.d & p.D & r.p) | (l.p & p.U & r.u);
}
void build(int l,int r,int p)
{
if(l==r) {a[p].U=a[p].D=a[p].u=a[p].d=true; return;}
int mid=(l+r)>>1;
build(l,mid,ls);
build(mid+1,r,rs);
pushup(a[p],a[ls],a[rs]);
}
void update_r(int x,int val,int opt,int l,int r,int p)
{
int mid=(l+r)>>1;
if(x==mid)
{
if(opt==1) a[p].U=val;
else a[p].D=val;
pushup(a[p],a[ls],a[rs]);
return;
}
if(x<=mid) update_r(x,val,opt,l,mid,ls);
else update_r(x,val,opt,mid+1,r,rs);
pushup(a[p],a[ls],a[rs]);
}
void update_c(int x,int val,int l,int r,int p)
{
if(l==r) {a[p].l=a[p].r=a[p].p=a[p].q=val; return;}
int mid=(l+r)>>1;
if(x<=mid) update_c(x,val,l,mid,ls);
else update_c(x,val,mid+1,r,rs);
pushup(a[p],a[ls],a[rs]);
}
Node query(int x,int y,int l,int r,int p)
{
if(x<=l && r<=y) return a[p];
int mid=(l+r)>>1;
if(y<=mid) return query(x,y,l,mid,ls);
else if(x>mid) return query(x,y,mid+1,r,rs);
else
{
Node re=a[p];
pushup(re,query(x,y,l,mid,ls),query(x,y,mid+1,r,rs));
return re;
}
}
int main()
{
int c; cin >> c ;
build(1,c,1);
char s[10];
int r1,r2,c1,c2;
while(scanf("%s",s) != EOF)
{
if(s[0] == 'E') break;
scanf("%d%d%d%d",&r1,&c1,&r2,&c2);
if(c1 > c2) swap(c1,c2),swap(r1,r2);
if(s[0] == 'O')
{
if(r1 == r2) update_r(c1,1,r1,1,c,1);
else update_c(c1,1,1,c,1);
}
if(s[0] == 'C')
{
if(r1 == r2) update_r(c1,0,r1,1,c,1);
else update_c(c1,0,1,c,1);
}
if(s[0] == 'A')
{
Node l = query(1,c1,1,c,1),x = query(c1,c2,1,c,1),r = query(c1,c,1,c,1);
int ans;
// printf("%d\n",x.u ? 1 : 0);
// printf("%d\n",l.r ? 1 : 0);
// printf("%d\n",x.p ? 1 : 0);
// printf("%d\n",x.q ? 1 : 0);
// printf("%d\n",r.l ? 1 : 0);
// printf("%d\n",l.r ? 1 : 0);
// printf("%d\n",x.d ? 1 : 0);
// printf("%d\n",r.l ? 1 : 0);
if(r1==1 && r2==1)
/* puts("1"), */ans = x.u | (l.r & x.p) | (r.l & x.q) | (l.r & x.d & r.l);
if(r1==1 && r2==2)
/* puts("2"), */ans = x.q | (l.r & x.d) | (r.l & x.u) | (l.r & x.p & r.l);
if(r1==2 && r2==1)
/* puts("3"), */ans = x.p | (l.r & x.u) | (r.l & x.d) | (l.r & x.q & r.l);
if(r1==2 && r2==2)
/* puts("4"), */ans = x.d | (l.r & x.q) | (r.l & x.p) | (l.r & x.u & r.l);
puts(ans ? "Y" : "N");
}
}
return 0;
}

小结:妈的神仙题.....

[bzoj1018][SHOI2008]堵塞的交通traffic_线段树的更多相关文章

  1. [BZOJ1018][SHOI2008]堵塞的交通traffic 线段树维护连通性

    1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec  Memory Limit: 162 MB Submit: 3795  Solved: 1253 [Sub ...

  2. BZOJ1018 SHOI2008堵塞的交通(线段树)

    动态图的连通性当然是可以用LCT维护的.但这相当的不优美,毕竟这样做没有用到任何该图的性质,LCT自带的大常数也会使其跑得非常慢. 考虑用线段树维护区间左右端四个点之间各自的连通性(仅经过该区间内路径 ...

  3. Bzoj1018[SHOI2008]堵塞的交通traffic(线段树)

    这题需要维护连通性,看到有连接删除,很容易直接就想LCT了.然而这题点数20w操作10w,LCT卡常估计过不去.看到这个东西只有两行,考虑能否用魔改后的线性数据结构去维护.我想到了线段树. 考虑如果两 ...

  4. bzoj1018[SHOI2008]堵塞的交通traffic——线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1018 巧妙的线段树.维护矩阵四个角的连通性. 考虑两个点连通的可能路径分成3部分:两点左边. ...

  5. 【BZOJ1018】堵塞的交通(线段树)

    [BZOJ1018]堵塞的交通(线段树) 题面 Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可 以被看成是一个2行C列的矩形网 ...

  6. 【BZOJ1018】[SHOI2008]堵塞的交通traffic 线段树

    [BZOJ1018][SHOI2008]堵塞的交通traffic Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可以被看成是一个 ...

  7. BZOJ 1018: [SHOI2008]堵塞的交通traffic [线段树 区间信息]

    1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 3064  Solved: 1027[Submi ...

  8. 【bzoj1018】[SHOI2008]堵塞的交通traffic 线段树区间合并+STL-set

    题目描述 给出一张2*n的网格图,初始每条边都是不连通的.多次改变一条边的连通性或询问两个点是否连通. 输入 第一行只有一个整数C,表示网格的列数.接下来若干行,每行为一条交通信息,以单独的一行“Ex ...

  9. Bzoj1018/洛谷P4246 [SHOI2008]堵塞的交通(线段树分治+并查集)

    题面 Bzoj 洛谷 题解 考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治. 具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内 ...

随机推荐

  1. Java——舞动的排序

    一.冒泡排序: http://v.youku.com/v_show/id_XMzMyOTAyMzQ0.html //冒泡排序 public class Bubbling { public static ...

  2. iOS 面试集锦

    是第一篇: 1.Difference between shallow copy and deep copy?
浅复制和深复制的区别?
答案:浅层复制:只复制指向对象的指针,而不复制引用对象本身.
深层 ...

  3. Fortran学习笔记2(变量声明)

    常数的申明方式 变量初始化 等价申明EQUIALENCE 类型转化 自定义类型 KIND用法 常数的申明方式 程序中所有处理的数据,有些事固定不变的常数,如圆周率π和重力加速度G等. 此时,程序员可以 ...

  4. ubuntu 安装 php7.2

    sudo apt-get install software-properties-common python-software-properties sudo add-apt-repository p ...

  5. java代码生成二维码

    java代码生成二维码一般步骤 常用的是Google的Zxing来生成二维码,生成的一般步骤如下: 一.下载zxing-core的jar包: 二.需要创建一个MatrixToImageWriter类, ...

  6. verilog behavioral modeling--blocking and nonblocking

                                                                                                 BLOCKIN ...

  7. python logging with yaml

    Recently, I was made a service which can provide a simple way to get best model. so, i spent lot of ...

  8. Django ORM操作及进阶

    一般操作 看专业的官网文档,做专业的程序员! 必知必会13条 <1> all(): 查询所有结果 <2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 ...

  9. 前端,字体图标,盒子显隐,2d形变,盒子阴影

    ---恢复内容开始--- 字体图标 1.将font-awesome-4.7.0文件夹放入项目内 2.在html head中连接 3.在body中导入 盒子显隐 1.使用高度显隐 <p>-- ...

  10. 菜鸟的《Linux程序设计》学习—shell script

    1. 认识shell script shell script是利用shell的功能缩写的一个"程序",这个程序是使用纯文本文件,将一些shell的语法与命令(含外部命令)写在里面, ...