[bzoj1018][SHOI2008]堵塞的交通traffic_线段树
bzoj-1018 SHOI-2008 堵塞的交通traffic
参考博客:https://www.cnblogs.com/MashiroSky/p/5973686.html
题目大意:有一天,由于某种穿越现象作用,你来到了传说中的小人国。小人国的布局非常奇特,整个国家的交通系统可以被看成是一个2行C列的矩形网格,网格上的每个点代表一个城市,相邻的城市之间有一条道路,所以总共有2C个城市和3C-2条道路。 小人国的交通状况非常槽糕。有的时候由于交通堵塞,两座城市之间的道路会变得不连通,直到拥堵解决,道路才会恢复畅通。初来咋到的你决心毛遂自荐到交通部某份差事,部长听说你来自一个科技高度发达的世界,喜出望外地要求你编写一个查询应答系统,以挽救已经病入膏肓的小人国交通系统。 小人国的交通部将提供一些交通信息给你,你的任务是根据当前的交通情况回答查询的问题。交通信息可以分为以下几种格式:
Close r1 c1 r2 c2:相邻的两座城市(r1,c1)和(r2,c2)之间的道路被堵塞了;
Open r1 c1 r2 c2:相邻的两座城市(r1,c1)和(r2,c2)之间的道路被疏通了;
Ask r1 c1 r2 c2:询问城市(r1,c1)和(r2,c2)是否连通。如果存在一条路径使得这两条城市连通,则返回Y,否则返回N;
数据范围:$0\le C\le 10^5$,$1\le Number_{message} \le 10^5$。
想法:
哇哦。。。
这题真的能想出来?
我们用线段树维护一个列在$(l,r)$之间的这么$r-l+1$个方格的连通性。
维护的信息如下图:
然后如果在同一行的话同理。
现在,假设从左到右,从上到下,矩阵的四个角依次命名为$s1$,$s2$,$s3$,$s4$。
我们就维护
$U$:第一行的$mid$和$mid+1$是否连通。
$D$:第二行的$mid$和$mid+1$是否连通。
$l$:$s1$和$s3$是否连通。
$r$:$s2$和$s4$是否连通。
$u$:$s1$和$s2$是否连通。
$d$:$s3$和$s4$是否连通。
$q$:$s1$和$s4$是否连通。
$p$:$s2$和$s3$是否连通。
之后暴力维护就好了。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
#define N 100010
using namespace std;
struct Node
{
bool U,D,l,r,u,d,p,q;
}a[N<<2];
inline void pushup(Node &p,Node l,Node r)
{
p.l = l.l | (l.u & p.U & r.l & p.D & l.d);
p.r = r.r | (r.u & p.U & l.r & p.D & r.d);
p.u = (l.u & p.U & r.u) | (l.q & p.D & r.p);
p.d = (l.d & p.D & r.d) | (l.p & p.U & r.q);
p.q = (l.u & p.U & r.q) | (l.q & p.D & r.d);
p.p = (l.d & p.D & r.p) | (l.p & p.U & r.u);
}
void build(int l,int r,int p)
{
if(l==r) {a[p].U=a[p].D=a[p].u=a[p].d=true; return;}
int mid=(l+r)>>1;
build(l,mid,ls);
build(mid+1,r,rs);
pushup(a[p],a[ls],a[rs]);
}
void update_r(int x,int val,int opt,int l,int r,int p)
{
int mid=(l+r)>>1;
if(x==mid)
{
if(opt==1) a[p].U=val;
else a[p].D=val;
pushup(a[p],a[ls],a[rs]);
return;
}
if(x<=mid) update_r(x,val,opt,l,mid,ls);
else update_r(x,val,opt,mid+1,r,rs);
pushup(a[p],a[ls],a[rs]);
}
void update_c(int x,int val,int l,int r,int p)
{
if(l==r) {a[p].l=a[p].r=a[p].p=a[p].q=val; return;}
int mid=(l+r)>>1;
if(x<=mid) update_c(x,val,l,mid,ls);
else update_c(x,val,mid+1,r,rs);
pushup(a[p],a[ls],a[rs]);
}
Node query(int x,int y,int l,int r,int p)
{
if(x<=l && r<=y) return a[p];
int mid=(l+r)>>1;
if(y<=mid) return query(x,y,l,mid,ls);
else if(x>mid) return query(x,y,mid+1,r,rs);
else
{
Node re=a[p];
pushup(re,query(x,y,l,mid,ls),query(x,y,mid+1,r,rs));
return re;
}
}
int main()
{
int c; cin >> c ;
build(1,c,1);
char s[10];
int r1,r2,c1,c2;
while(scanf("%s",s) != EOF)
{
if(s[0] == 'E') break;
scanf("%d%d%d%d",&r1,&c1,&r2,&c2);
if(c1 > c2) swap(c1,c2),swap(r1,r2);
if(s[0] == 'O')
{
if(r1 == r2) update_r(c1,1,r1,1,c,1);
else update_c(c1,1,1,c,1);
}
if(s[0] == 'C')
{
if(r1 == r2) update_r(c1,0,r1,1,c,1);
else update_c(c1,0,1,c,1);
}
if(s[0] == 'A')
{
Node l = query(1,c1,1,c,1),x = query(c1,c2,1,c,1),r = query(c1,c,1,c,1);
int ans;
// printf("%d\n",x.u ? 1 : 0);
// printf("%d\n",l.r ? 1 : 0);
// printf("%d\n",x.p ? 1 : 0);
// printf("%d\n",x.q ? 1 : 0);
// printf("%d\n",r.l ? 1 : 0);
// printf("%d\n",l.r ? 1 : 0);
// printf("%d\n",x.d ? 1 : 0);
// printf("%d\n",r.l ? 1 : 0);
if(r1==1 && r2==1)
/* puts("1"), */ans = x.u | (l.r & x.p) | (r.l & x.q) | (l.r & x.d & r.l);
if(r1==1 && r2==2)
/* puts("2"), */ans = x.q | (l.r & x.d) | (r.l & x.u) | (l.r & x.p & r.l);
if(r1==2 && r2==1)
/* puts("3"), */ans = x.p | (l.r & x.u) | (r.l & x.d) | (l.r & x.q & r.l);
if(r1==2 && r2==2)
/* puts("4"), */ans = x.d | (l.r & x.q) | (r.l & x.p) | (l.r & x.u & r.l);
puts(ans ? "Y" : "N");
}
}
return 0;
}
小结:妈的神仙题.....
[bzoj1018][SHOI2008]堵塞的交通traffic_线段树的更多相关文章
- [BZOJ1018][SHOI2008]堵塞的交通traffic 线段树维护连通性
1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec Memory Limit: 162 MB Submit: 3795 Solved: 1253 [Sub ...
- BZOJ1018 SHOI2008堵塞的交通(线段树)
动态图的连通性当然是可以用LCT维护的.但这相当的不优美,毕竟这样做没有用到任何该图的性质,LCT自带的大常数也会使其跑得非常慢. 考虑用线段树维护区间左右端四个点之间各自的连通性(仅经过该区间内路径 ...
- Bzoj1018[SHOI2008]堵塞的交通traffic(线段树)
这题需要维护连通性,看到有连接删除,很容易直接就想LCT了.然而这题点数20w操作10w,LCT卡常估计过不去.看到这个东西只有两行,考虑能否用魔改后的线性数据结构去维护.我想到了线段树. 考虑如果两 ...
- bzoj1018[SHOI2008]堵塞的交通traffic——线段树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1018 巧妙的线段树.维护矩阵四个角的连通性. 考虑两个点连通的可能路径分成3部分:两点左边. ...
- 【BZOJ1018】堵塞的交通(线段树)
[BZOJ1018]堵塞的交通(线段树) 题面 Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可 以被看成是一个2行C列的矩形网 ...
- 【BZOJ1018】[SHOI2008]堵塞的交通traffic 线段树
[BZOJ1018][SHOI2008]堵塞的交通traffic Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可以被看成是一个 ...
- BZOJ 1018: [SHOI2008]堵塞的交通traffic [线段树 区间信息]
1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 3064 Solved: 1027[Submi ...
- 【bzoj1018】[SHOI2008]堵塞的交通traffic 线段树区间合并+STL-set
题目描述 给出一张2*n的网格图,初始每条边都是不连通的.多次改变一条边的连通性或询问两个点是否连通. 输入 第一行只有一个整数C,表示网格的列数.接下来若干行,每行为一条交通信息,以单独的一行“Ex ...
- Bzoj1018/洛谷P4246 [SHOI2008]堵塞的交通(线段树分治+并查集)
题面 Bzoj 洛谷 题解 考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治. 具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内 ...
随机推荐
- WebStorm换主题(护眼)
一.下载喜欢颜色的主题 http://www.phpstorm-themes.com/ 我用的豆沙绿护眼 <scheme name="Solarized Light My" ...
- POI写入word docx 07 的两种方法
下载最新jar包:http://poi.apache.org/download.html 以及API 1.写入word 1.1 直接通过XWPFDocument生成 在使用XWPFDocument写d ...
- 响应式Web设计- 图片
使用width属性:如果width属性设置为100%,图片会根据上下范围实现响应式的功能. <!DOCTYPE html><html><head><meta ...
- Linux下关于/tmp目录的清理规则
本文将介绍Linux下/tmp目录的清理规则,rhel6和rhel7将以完全不同的两种方式进行清理. RHEL6 tmpwatch命令 tmpwatch 是专门用于解决“删除 xxx天没有被访问/修改 ...
- perl学习之内置变量
Perl内置特殊变量 一.正则表达式特殊变量:1.$n :包含上次模式匹配的第n个子串2.$& :前一次成功模式匹配的字符串3.$` :前次匹配成功的子串之前的内容4.$’ :前次匹配 ...
- (转)编写高质量的OC代码
点标记语法 属性和幂等方法(多次调用和一次调用返回的结果相同)使用点标记语法访问,其他的情况使用方括号标记语法. 良好的风格: view.backgroundColor = [UIColor or ...
- PAT Basic 1051
1051 复数乘法 复数可以写成 (A+Bi) 的常规形式,其中 A 是实部,B 是虚部,i 是虚数单位,满足 i2=−1:也可以写成极坐标下的指数形式 (R×e(Pi)),其中 R 是复 ...
- python基础——13(系统、时间、序列化模块)
一.时间模块 1.标准库time %y 两位数的年份表示(00-99) %Y 四位数的年份表示(0000-9999) %m 月份(01-12) %d 月中的一天(0-31) %H 24小时制小时数(0 ...
- PC上测试移动端网站和模拟手机浏览器
一.Chrome*浏览器 chrome模拟手机总共有四种方法,原理都一样,通过伪装User-Agent,将浏览器模拟成Android设备.以下标星的为推荐方法. 1.新建Chrome快捷方式 右击桌面 ...
- Django之ORM操作(重要)
Django ORM操作 一般操作 看专业的官网文档,做专业的程序员! 必知必会13条 <1> all(): 查询所有结果 <2> get(**kwargs): 返回与所给 ...