Codeforces 515E Drazil and Park (ST表)
题目链接 Drazil and Park
中文题面 传送门
如果他选择了x和y,那么他消耗的能量为dx + dx + 1 + ... + dy - 1 + 2 * (hx + hy).
把这个式子写成这个形式
(d1 + d2 + ... + dy - 1 + 2 * hy) + (2 * hx - (d1 + d2 + ... + dx - 1))
令(2 * hk - (d1 + d2 + ... + dk - 1)) = Lk
(d1 + d2 + ... + dk - 1 + 2 * hk) = Rk
我们在查询的时候,就要在[a, b]内找到u, v 使得L[u] + R[v] 最大
而当 u < v 的时候,总有 L[u] + R[v] > L[v] + R[u]
那我们放心地在[a, b]这个区间内找u和v,使L[u]和R[v]分别为这段区间上的最大值
这个过程用ST表维护即可。
但是我们要注意u = v的情况,也就是说求出来的u和v可能相等。
而题目的要求是u和v必须不相等
那么这个时候我们分类讨论一下,把[a, b]在u这一点分割成两个区间,在[a, u - 1]和[u + 1, b]里去找v
同理把[a, b]在v这一点分割成两个区间,在[a, v - 1]和[v + 1, b]里去找u
问题就这么解决了
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL;
typedef pair <LL, int> PII; const int N = 2e5 + 10;
const int A = 19; int n, m;
LL d[N], h[N], s[N];
PII x[N], y[N], f[N][A], g[N][A];
int L, R;
int et; void ST(){
rep(i, 1, n) f[i][0] = x[i];
rep(j, 1, 18)
rep(i, 1, n)
if ((i + (1 << j) - 1) <= n) f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]); rep(i, 1, n) g[i][0] = y[i];
rep(j, 1, 18)
rep(i, 1, n)
if ((i + (1 << j) - 1) <= n) g[i][j] = max(g[i][j - 1], g[i + (1 << (j - 1))][j - 1]);
} inline PII Xmax(int l, int r){
if (l > r) return make_pair(-1e18, 0);
int k = (int)log2((double)(r - l + 1));
return max(f[l][k], f[r - (1 << k) + 1][k]);
} inline PII Ymax(int l, int r){
if (l > r) return make_pair(-1e18, 0);
int k = (int)log2((double)(r - l + 1));
return max(g[l][k], g[r - (1 << k) + 1][k]);
} LL solve(int l, int r){
PII n1 = Xmax(l, r), n2 = Ymax(l, r);
if (n1.second != n2.second) return n1.first + n2.first;
PII n3 = max(Ymax(l, n1.second - 1), Ymax(n1.second + 1, r));
PII n4 = max(Xmax(l, n2.second - 1), Xmax(n2.second + 1, r));
return max(n1.first + n3.first, n2.first + n4.first);
} int main(){ scanf("%d%d", &n, &m);
rep(i, 1, n) scanf("%lld", d + i);
rep(i, 1, n) scanf("%lld", h + i); rep(i, n + 1, n << 1) d[i] = d[i - n];
rep(i, n + 1, n << 1) h[i] = h[i - n]; rep(i, 2, n << 1) s[i] = s[i - 1] + d[i - 1];
rep(i, 1, n << 1) x[i] = make_pair(2 * h[i] + s[i], i);
rep(i, 1, n << 1) y[i] = make_pair(2 * h[i] - s[i], i); et = n;
n <<= 1;
ST();
n = et; while (m--){
int l, r;
scanf("%d%d", &l, &r);
if (r >= l) L = r + 1, R = l - 1 + n; else L = r + 1, R = l - 1;
printf("%d %d\n", L, R);
printf("%lld\n", solve(L, R));
} return 0;
}
Codeforces 515E Drazil and Park (ST表)的更多相关文章
- Codeforces 475D 题解(二分查找+ST表)
题面: 传送门:http://codeforces.com/problemset/problem/475/D Given a sequence of integers a1, -, an and q ...
- Codeforces 873E Awards For Contestants ST表
原文链接https://www.cnblogs.com/zhouzhendong/p/9255885.html 题目传送门 - CF873E 题意 现在要给 $n(n\leq 3000)$ 个学生颁奖 ...
- Codeforces 803G Periodic RMQ Problem ST表+动态开节点线段树
思路: (我也不知道这是不是正解) ST表预处理出来原数列的两点之间的min 再搞一个动态开节点线段树 节点记录ans 和标记 lazy=-1 当前节点的ans可用 lazy=0 没被覆盖过 els ...
- CodeForces 516C Drazil and Park 线段树
原文链接http://www.cnblogs.com/zhouzhendong/p/8990745.html 题目传送门 - CodeForces 516C 题意 在一个环上,有$n$棵树. 给出每一 ...
- codeforces 516c// Drazil and Park// Codeforces Round #292(Div. 1)
题意:一个圆环上有树,猴子上下其中一棵树,再沿着换跑,再上下另一棵树.给出一个区间,问最大的运动距离是. 给出区间大小dst,和数高数组arr. 设区间[x,y],a[x]=2*arr[x]+dst[ ...
- Codeforces Round #292 (Div. 1) C. Drazil and Park 线段树
C. Drazil and Park 题目连接: http://codeforces.com/contest/516/problem/C Description Drazil is a monkey. ...
- ST表入门学习poj3264 hdu5443 hdu5289 codeforces round #361 div2D
ST算法介绍:[转自http://blog.csdn.net/insistgogo/article/details/9929103] 作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例 方 ...
- Codeforces Round #422 (Div. 2)E. Liar sa+st表+dp
题意:给你两个串s,p,问你把s分开顺序不变,能不能用最多k段合成p. 题解:dp[i][j]表示s到了前i项,用了j段的最多能合成p的前缀是哪里,那么转移就是两种,\(dp[i+1][j]=dp[i ...
- 【CodeForces】713 D. Animals and Puzzle 动态规划+二维ST表
[题目]D. Animals and Puzzle [题意]给定n*m的01矩阵,Q次询问某个子矩阵内的最大正方形全1子矩阵边长.n,m<=1000,Q<=10^6. [算法]动态规划DP ...
随机推荐
- oracle中group by的高级用法
简单的group by用法 select c1,sum(c2) from t1 where t1<>'test' group by c1 having sum(c2)>100; ro ...
- Python3 try-except、raise和assert解析
Python3 try-except.raise和assert解析 一.说明 关于异常捕获try-except:在学java的时候就被教育异常捕获也是java相对c的一大优点,几年下来多少也写了些代码 ...
- CS193p Lecture 8 - Protocols, Blocks and Animation
一.协议(Protocols) 1. 声明协议 @protocol Foo <Xyzzy, NSObject> // ... @optinal // @required //... @en ...
- XAMPP虚拟主机配置--20150423
你需要一些顶级域名访问方式来访问你本地的项目文件而不是目录方式访问,这时候就需要配置虚拟主机,给你的目录绑定一个域名(本地的话可以通过修改 hosts 文件随便绑定什么域名比如 www.a.com 或 ...
- javascript基础知识 (八) BOM学习笔记
一.什么是BOM BOM(Browser Object Model)即浏览器对象模型. BOM提供了独立于内容 而与浏览器窗口进行交互的对象: 由于BOM主要用于管理窗口 ...
- noip_最后一遍_2-图论部分
大体按照 数学 图论 dp 数据结构 这样的顺序 模板集 这个真的只有模板了……………… ·spfa #include<bits/stdc++.h> using namespace std ...
- Java的BigDecimal容易出现的坑
BigDecimal一般是用来做要求比较高的精准计算的.前几天在使用的时候遇到一个大坑,记录下. 这个问题产生是使用BigDecimal做除法(divide)运算,这个类的divide方法存在三个常用 ...
- (14)zabbix Simple checks基本检测
1. 开始 Simple checks通常用来检查远程未安装代理或者客户端的服务 使用simple checks,被监控客户端无需安装zabbix agent客户端,zabbix server直接使用 ...
- CSS3-文本-word-wrap,word-break,white-space
一.word-wrap使用: 语法: word-wrap : normal | break-word 取值说明: 1.normal为默认值,当其值为normal控制连续文本换行(允许内容顶开容器的边界 ...
- python爬虫基础02-urllib库
Python网络请求urllib和urllib3详解 urllib是Python中请求url连接的官方标准库,在Python2中主要为urllib和urllib2,在Python3中整合成了urlli ...