8.1回归的多面性

8.2 OLS回归

OLS回归拟合模型形式:

为了能够恰当地解释oLs模型的系数,数据必须满足以下统计假设。

口正态性对于固定的自变量值,因变量值成正态分布。

口独立性Yi值之间相互独立。

口线性因变量与自变量之间为线性相关。

口同方差性因变量的方差不随自变量的水平不同而变化。也可称作不变方差,但是说同方差性感觉上更犀利。

8.2.1用lm()拟合回归模型

myfit<-lm(formula,data)

formula指要拟合的模型形式,data是一个数据框,包含了用于拟合模型的数据。

表达式(formula):Y~X1+X2+…+Xk

8.2.2简单线性回归

> fit<-lm(weight~height,data=women)

> summary(fit)

Call:

lm(formula = weight ~height, data = women)

Residuals:

Min 1Q Median 3Q Max

-1.7333 -1.1333-0.3833 0.7417 3.1167

Coefficients:

Estimate Std. Error t valuePr(>|t|)

(Intercept)-87.51667 5.93694 -14.74 1.71e-09 ***

height 3.45000 0.09114 37.85 1.09e-14 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’1

Residual standarderror: 1.525 on 13 degrees of freedom

MultipleR-squared: 0.991, Adjusted R-squared: 0.9903

F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14

> plot(women$height,women$weight,xlab="h",ylab="w")

> abline(fit)

8.2.3多项式回归

> plot(women$height,women$weight,xlab="h",ylab="w")

> abline(fit)

> fit2<-lm(weight~height+I(height^2),data=women)

> plot(women$height,women$weight,xlab="height(ininches)",ylab="weight (in lbs)")

> lines(women$height,fitted(fit2))

8.2.4多元线性回归

> library(car)

> states<-as.data.frame(state.x77[,c("Murder","Population","Illiteracy","Income","Frost")])

> cor(states)

Murder PopulationIlliteracy Income

Murder 1.0000000 0.3436428 0.7029752 -0.2300776

Population 0.3436428 1.0000000 0.1076224 0.2082276

Illiteracy 0.7029752 0.1076224 1.0000000 -0.4370752

Income -0.2300776 0.2082276 -0.4370752 1.0000000

Frost -0.5388834 -0.3321525 -0.6719470 0.2262822

Frost

Murder -0.5388834

Population -0.3321525

Illiteracy -0.6719470

Income 0.2262822

Frost 1.0000000

> scatterplotMatrix(states,spread=FALSE,lty.smooth=2,main="spm")

8.2.5有交互项的多元线性回归

> fit<-lm(mpg~hp+wt+hp:wt,data=mtcars)

> summary(fit)

Call:

lm(formula = mpg ~ hp +wt + hp:wt, data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-3.0632 -1.6491-0.7362 1.4211 4.5513

Coefficients:

Estimate Std. Error t valuePr(>|t|)

(Intercept)49.80842 3.60516 13.816 5.01e-14 ***

hp -0.12010 0.02470 -4.863 4.04e-05 ***

wt -8.21662 1.26971 -6.471 5.20e-07 ***

hp:wt 0.02785 0.00742 3.753 0.000811 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’1

Residual standarderror: 2.153 on 28 degrees of freedom

MultipleR-squared: 0.8848, Adjusted R-squared: 0.8724

F-statistic: 71.66 on 3and 28 DF, p-value: 2.981e-13

Effects包中的effect()函数,可以用图形展示交互项的结果

Plot(effect(term,mod,xlevels),multiline=TRUE)

term即模型要画的项,mod为通过lm ( )拟合的模型,xlevels是一个列表,指定变量要设定的常量值,multiline=TRUE选项表示添加相应直线。

欢迎关注:

R in action读书笔记(8)-第八章:回归(上)的更多相关文章

  1. R in action读书笔记(11)-第八章:回归-- 选择“最佳”的回归模型

    8.6 选择“最佳”的回归模型 8.6.1 模型比较 用基础安装中的anova()函数可以比较两个嵌套模型的拟合优度.所谓嵌套模型,即它的一 些项完全包含在另一个模型中 用anova()函数比较 &g ...

  2. R in action读书笔记(10)-第八章:回归-- 异常观测值 改进措施

    8.4 异常观测值 8.4.1 离群点 car包也提供了一种离群点的统计检验方法.outlierTest()函数可以求得最大标准化残差绝对值Bonferroni调整后的p值: > library ...

  3. R in action读书笔记(9)-第八章:回归 -回归诊断

    8.3回归诊断 > fit<-lm(weight~height,data=women) > par(mfrow=c(2,2)) > plot(fit) 为理解这些图形,我们来回 ...

  4. R in action读书笔记(22)第十六章 高级图形进阶(下)

    16.2.4 图形参数 在lattice图形中,lattice函数默认的图形参数包含在一个很大的列表对象中,你可通过trellis.par.get()函数来获取,并用trellis.par.set() ...

  5. R in action读书笔记(21)第十六章 高级图形进阶(上)

    16.1 R 中的四种图形系统 基础图形函数可自动调用,而grid和lattice函数的调用必须要加载相应的包(如library(lattice)).要调用ggplot2函数需下载并安装该包(inst ...

  6. R in action读书笔记(20)第十五章 处理缺失数据的高级方法

    处理缺失数据的高级方法 15.1 处理缺失值的步骤 一个完整的处理方法通常包含以下几个步骤: (1) 识别缺失数据: (2) 检查导致数据缺失的原因: (3) 删除包含缺失值的实例或用合理的数值代替( ...

  7. R in action读书笔记(19)第十四章 主成分和因子分析

    第十四章:主成分和因子分析 本章内容 主成分分析 探索性因子分析 其他潜变量模型 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分.探索性因 ...

  8. R in action读书笔记(17)第十二章 重抽样与自助法

    12.4 置换检验点评 除coin和lmPerm包外,R还提供了其他可做置换检验的包.perm包能实现coin包中的部分功能,因此可作为coin包所得结果的验证.corrperm包提供了有重复测量的相 ...

  9. R in action读书笔记(14)第十一章 中级绘图 之一:散点图(高能预警)

    第十一章中级绘图 本章内容: 二元变量和多元变量关系的可视化 绘制散点图和折线图 理解相关图 学习马赛克图和关联图 本章用到的函数有: plot hexbin ablines iplot scatte ...

随机推荐

  1. perl BEGIN block and END block

    1 本质上就是一段代码 BEGIN在程序运行前执行,END在程序运行之后执行. 2 BEGIN END的行为和所在的位置无关 也就是说,无论BEGIN和END block位于代码的哪里,最先执行的是B ...

  2. Test redis

    单机测试: public class RedisClient{ private Jedis jedis; private JedisPool jedisPool; private ShardedJed ...

  3. UVALive3126 Taxi Cab Scheme —— 最小路径覆盖

    题目链接:https://vjudge.net/problem/UVALive-3126 题解: 最小路径覆盖:即在图中找出尽量少的路径,使得每个结点恰好只存在于一条路径上.其中单独一个点也可以是一条 ...

  4. YTU 2411: 谁去参加竞赛?【简单循环】

    2411: 谁去参加竞赛?[简单循环] 时间限制: 1 Sec  内存限制: 64 MB 提交: 461  解决: 261 题目描述 学校要举办大学生程序设计竞赛,老师要求期末考试成绩在平均成绩以上的 ...

  5. 【繁琐工作自动化】pandas 处理 excel 文件

    0. 一般处理 读取 excel 格式文件:df = pd.read_excel('xx.xlsx'),下面是一些简单查看文件内容的函数: df.head():展示前五行: df.columns:展示 ...

  6. AutoIT: 处理GridView控件的一些折中方法

    一般情况下,Gridview是无法通过AutoIT Window Info来获取控件信息的,但是可以有折中的办法对Gridview中的字段赋值. #include<array.au3> $ ...

  7. 《StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation》论文笔记

    ---恢复内容开始--- Motivation 使用单组的生成器G和判别训练图片在多个不同的图片域中进行转换 效果确实很逆天,难怪连Good Fellow都亲手给本文点赞 Introduction 论 ...

  8. js点赞浮动特效

    js自己封装的库: (function($) { $.extend({ tipsBox: function(options) { options = $.extend({ obj: null, //j ...

  9. react-native页面之间的相互传值

    react-native页面之间的相互传值 之前在自己学习react-native的时候,在页面跳转和传值问题上花了一段时间去网上搜索和查找资料,自己总结了两个方法.可以参考 https://blog ...

  10. Ocelot(十二)- 请求聚合

    Ocelot允许您指定聚合多个普通ReRoutes的Aggregate ReRoutes(聚合路由),并将其响应映射到一个对象中.一般用于当您有一个客户端向服务器发出多个请求,而这些请求可以合并成一个 ...