BST AVL RBT B- B+ 的一些理解
BST(二叉查找树,排序二叉树),如果数据有序的话,组成的二叉树会形成单列的形式,导致查询效率低
AVL(平衡二叉树) 使树的左右高度差的绝对值不超过2,保证了查询效率。但是插入和删除会带来多次旋转,导致效率低
RBT(红黑树),是一种弱化的平衡二叉树,在插入、删除的时候,减少了旋转的次数
B-树,由于二叉树只有两个子树,在磁盘上进行查找的时候,效率较低,所以出现了多分支的树,即B树(2-3树,2-3-4树)
B+树,对B-树作了一些限制
为什么数据库使用B树而不用AVL或者红黑树呢?
AVL树和红黑树这些二叉树结构的数据结构可以达到最高的查询效率这是毋庸置疑的。
既然如此,那么数据库索引为什么不用 AVL 树或者红黑树呢?
这就牵扯到一个问题了,不考虑每种数据结构的前提条件而选择数据结构都是在耍流氓。
AVL 数和红黑树基本都是存储在内存中才会使用的数据结构,那磁盘中会有什么不同呢?
这就要牵扯到磁盘的存储原理了
操作系统读写磁盘的基本单位是扇区,而文件系统的基本单位是簇(Cluster)。
也就是说,磁盘读写有一个最少内容的限制,即使我们只需要这个簇上的一个字节的内容,我们也要含着泪把一整个簇上的内容读完。
那么,现在问题就来了
一个父节点只有 2 个子节点,并不能填满一个簇上的所有内容啊?那多余的内容岂不是要浪费了?我们怎么才能把浪费的这部分内容利用起来呢?哈哈,答案就是 B+ 树。
由于 B+ 树分支比二叉树更多,所以相同数量的内容,B+ 树的深度更浅,深度代表什么?代表磁盘 io 次数啊!数据库设计的时候 B+ 树有多少个分支都是按照磁盘一个簇上最多能放多少节点设计的啊!
所以,涉及到磁盘上查询的数据结构,一般都用 B+ 树啦。
BST AVL RBT B- B+ 的一些理解的更多相关文章
- 算法设计和数据结构学习_5(BST&AVL&红黑树简单介绍)
前言: 节主要是给出BST,AVL和红黑树的C++代码,方便自己以后的查阅,其代码依旧是data structures and algorithm analysis in c++ (second ed ...
- BST&AVL&红黑树简单介绍
(BST&AVL&红黑树简单介绍) 前言: 节主要是给出BST,AVL和红黑树的C++代码,方便自己以后的查阅,其代码依旧是data structures and algorithm ...
- [算法专题] BST&AVL&RB-Tree
BST 以下BST的定义来自于Wikipedia: Binary Search Tree, is a node-based binary tree data structure which has t ...
- BST,AVL,B,B+,B*,红黑树
BST(右)和AVL(左) 比较:AVL树每个结点的左右子树的深度差的绝对值不大于1 B - tree 特点:所有结点都包含数据信息,不同查询的效率不同,特殊的:二阶B树就是AVL,三阶B树就是2-3 ...
- 对于AVL树和红黑树的理解
AVL又称(严格)高度平衡的二叉搜索树,也叫二叉查找树.平衡二叉树.window对进程地址空间的管理用到了AVL树. 红黑树是非严格平衡二叉树,统计性能要好于平衡二叉树.广泛的在C++的STL中,ma ...
- HDU-1251-统计难题(Trie树)(BST)(AVL)
字典树解法(Trie树) Accepted 1251 156MS 45400K 949 B C++ #include"iostream" #include"cstdlib ...
- AVL树的左旋右旋理解 (转)
AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多 ...
- 树:BST、AVL、红黑树、B树、B+树
我们这个专题介绍的动态查找树主要有: 二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操 ...
- 树(三)——自平衡二叉树(AVL)
简介 自平衡二叉树(AVL)属于二叉平衡树的一类,此类树主要完成一个从键到值的查找过程,即字典(或映射),它维护树高度的方式与其他数据结构不同. 自平衡规则: AVL树的左.右子树都是AVL树 左.右 ...
随机推荐
- 机器学习 Hidden Markov Models 2
Hidden Markov Models 下面我们给出Hidden Markov Models(HMM)的定义,一个HMM包含以下几个要素: ∏=(πi)表示初始状态的向量.A={aij}状态转换矩阵 ...
- Bootstrap-CL:按钮下拉菜单
ylbtech-Bootstrap-CL:按钮下拉菜单 1.返回顶部 1. Bootstrap 按钮下拉菜单 本章将讲解如何使用 Bootstrap class 向按钮添加下拉菜单.如需向按钮添加下拉 ...
- MySQL中的RAND()函数使用详解
转自:https://www.jb51.net/article/66697.htm MySQL RAND()函数调用可以在0和1之间产生一个随机数: ? 1 2 3 4 5 6 7 mysql> ...
- A tutorial by example(转载)
转自:http://mrbook.org/blog/tutorials/make/ Compiling your source code files can be tedious, specially ...
- Codeforces - 773A - Success Rate - 二分 - 简单数论
https://codeforces.com/problemset/problem/773/A 一开始二分枚举d,使得(x+d)/(y+d)>=p/q&&x/(y+d)<= ...
- bzoj 1049: [HAOI2006]数字序列【dp+二分+瞎搞】
第一问明显就是用b[i]=a[i]-i来做最长不下降子序列 然后第二问,对于一对f[i]=f[j]+1的(i,j),中间的数一定要改的,并且是等于b[i]或者b[j],我不会证,然后因为是随机数据,所 ...
- 【CodeForces - 501B 】Misha and Changing Handles(map)
Misha and Changing Handles CodeForces原题是英文,这里就直接上中文好了,翻译不是太给力,但是不影响做题 ^▽^ Description 神秘的三角洲里还有一个传说 ...
- Django学习:模板语法
一.什么是模板? 只要是在html里面有模板语法就不是html文件了,这样的文件就叫做模板. 二.模板语法分类 一.模板语法之变量:语法为 {{ }}: 在 Django 模板中遍历复杂数据结构的关键 ...
- .net mvc中一种简单的工作流的设计
开篇前的废话:工作流是我们在做互联网应用开发时经常需要用到的一种技术,复杂的工作流我们基本是借助一些开源的 工作流项目来做,比如 ccflow等,但是有时候,我们只需要实现一些简单的工作流流程,这时候 ...
- 第十一篇 .NET高级技术之内置泛型委托
Func.Action 一.如果不是声明为泛型委托 委托的类型名称不能重载,也就是不能名字相同类型参数不同 二..Net中内置两个泛型委托Func.Action(在“对象浏览器”的mscorlib的S ...