题目大意:

求1~N中与N的最大公约数大于M的个数

思路:

这个题是不是可以想到暴力枚举??对于每一组数据枚举与他的最大公约数大于m的数的个数。

是,这种做法没错误,但是保准你T成狗。。。。

我们至少要找一个不T的做法吧。。。我们考虑gcd这样一个性质gcd(x,y)=m则gcd(x/m,y/m)=1;我们就可以轻易的发现在这个地方的x/m不就是我们要求的第一个式子中的x吗??这样我们就只需要统计这样的x/m的个数不就好了吗?!

这样显然就可以知道,这不就是欧拉函数吗?!

是的,那我们就来尝试一下吧。。

代码:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int t,n,m,ans;
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
int get_phi(int x)
{
    int sum=x;
    ==)
    {
        ==) x/=;
        sum/=;
    }
    ;i*i<=x;i+=)
    {
        )
        {
            ) x/=i;
            sum=sum/i*(i-);
        }
    }
    ) sum=sum/x*(x-);
    return sum;
}
int main()
{
    t=read();
    while(t--)
    {
        n=read(),m=read();ans=;
        for(int i=m;i<=n;i++)
        {
            )  ans+=get_phi(n/i);
        }
        printf("%d\n",ans);
    }
    return ans;
}

有没有发现这样完美的T成狗了。。。

哈哈,我们在考虑一下别的优化。

跟上一个题一样,我们可以发现能成为他的最大公约数的数是不是一定是她的因子??我们求它大于m的因子可以暴力枚举能被他整除得数。

好像照样T。。。。

我们想一下上一题我们怎么处理的。我们是不是处理的根n?! 对于我们处理出来的因子是不是有两个来源,一个是本身i,另一个是n/i??

这样我们就可以分两种情况来判断,一是i>m,另一种是n/i大于m,这样我们再求n/i的欧拉函数与n/n/i即i的欧拉函数就好了。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int t,n,m,ans;
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
int get_phi(int x)
{
    int sum=x;
    ==)
    {
        ==) x/=;
        sum/=;
    }
    ;i*i<=x;i+=)
    {
        )
        {
            ) x/=i;
            sum=sum/i*(i-);
        }
    }
    ) sum=sum/x*(x-);
    return sum;
}
int main()
{
    t=read();
    while(t--)
    {
        n=read(),m=read();ans=;
        ;i*i<=n;i++)
        {
            )
            {
               if(i>=m&&i*i!=n) ans+=get_phi(n/i);
               if(n/i>=m) ans+=get_phi(i);
            }
        }
        printf("%d\n",ans);
    }
    return ans;
}

HDU——2588 GCD的更多相关文章

  1. HDU 2588 GCD 【Euler + 暴力技巧】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2588 GCD Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  2. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  3. HDU 2588 GCD

    题目大意:给定N,M, 求1<=X<=N 且gcd(X,N)>=M的个数. 题解:首先,我们求出数字N的约数,保存在约数表中,然后,对于大于等于M的约数p[i],求出Euler(n/ ...

  4. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  5. HDU 2588 GCD &amp;&amp; GCD问题总结

    GCD(一) 题目: The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ( ...

  6. 题解报告:hdu 2588 GCD(欧拉函数)

    Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...

  7. HDU 5726 GCD 区间GCD=k的个数

    GCD Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  8. HDU 2588 思维 容斥

    求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$ ...

  9. GCD HDU - 2588

    输入 N 和 M (2<=N<=1000000000, 1<=M<=N), 找出所有满足1<=X<=N 且 gcd(X,N)>=M 的 X 的数量. Inpu ...

随机推荐

  1. Js 使用小技巧总结(1)

    1.Js 的时间控制,小于初始时间,大于截止时间 <script type="text/javascript">        window.onload = Game ...

  2. 04—AOP 实现项目中的切面编程

  3. 使用Oracle的DBMS_SQL包执行动态SQL语句

    引用自:http://blog.csdn.net/ggjjzhzz/archive/2005/10/17/507880.aspx 在某些场合下,存储过程或触发器里的SQL语句需要动态生成.Oracle ...

  4. SparkContext, map, flatMap, zip以及例程wordcount

    SparkContext 通常作为入口函数,可以创建并返回一个RDD. 如把Spark集群当作服务端那Spark Driver就是客户端,SparkContext则是客户端的核心: 如注释所说 Spa ...

  5. 292 Nim Game Nim游戏

    您和您的朋友,两个人一起玩 Nim游戏:桌子上有一堆石头,每次你们轮流拿掉 1 到 3 块石头. 拿掉最后一块石头的人就是胜利者.由您来开局.你们两个都是聪明人,相信都有最佳的游戏策略. 请编写一个函 ...

  6. python--12、数据库进阶

    SQL语句关键词: #再次不做过多介绍 使用INSERT实现数据的插入 UPDATE实现数据的更新 使用DELETE实现数据的删除 使用SELECT查询数据以及. #示例中department为部门表 ...

  7. 【Linux】centos7 添加脚本到/etc/rc.local文件里,实现开机自启

    Linux 设置开机自启动,添加命令到/etc/rc.d/rc.local,本文以设置tomcat自启动为例: 一:添加自启动命令 export JAVA_HOME=/usr/java/jdk1.8. ...

  8. Linux文件排序和FASTA文件操作

    文件排序 seq: 产生一系列的数字; man seq查看其具体使用.我们这使用seq产生下游分析所用到的输入文件. # 产生从1到10的数,步长为1 $ seq 1 10 1 2 3 4 5 6 7 ...

  9. 洛谷——P2420 让我们异或吧

    P2420 让我们异或吧 题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中…xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B ...

  10. 关于dijkstra的小根堆优化

    YY引言 在NOI2018D1T1中出现了一些很震惊的情况,D1T1可以用最短路解决,但是大部分人都在用熟知的SPFA求解最短路.而SPFA的最坏复杂度能够被卡到$O(VE)$.就是边的数量乘以点的数 ...