Generation I

Oak is given N empty and non-repeatable sets which are numbered from 1 to N.

Now Oak is going to do N operations. In the i-th operation, he will insert an integer x between 1 and M to every set indexed between i and N.

Oak wonders how many different results he can make after the N operations. Two results are different if and only if there exists a set in one result different from the set with the same index in another result.

Please help Oak calculate the answer. As the answer can be extremely large, output it modulo 998244353.

输入描述:

The input starts with one line containing exactly one integer T which is the number of test cases. (1 ≤ T ≤ 20)

Each test case contains one line with two integers N and M indicating the number of sets and the range of integers. 
(1 ≤ N ≤ 1018, 1 ≤ M ≤ 1018, )

输出描述:

For each test case, output "Case #x: y" in one line (without quotes), where x is the test case number (starting from 1) and y is the number of different results 
modulo 998244353.

输入

2
2 2
3 4

输出

Case #1: 4
Case #2: 52

题意:有n个集合,n次操作,第i次操作中可以选一个数(数的范围是1~m),向i~n集合中都加入这个数,问最后有多少种不同的结果。
显然这题是因为集合不能有相同数的性质才导致答案不是m^n。
考虑全部的集合总共用了多少种不同的数,设共用了k种不同的数,则第一个集合有k种放法,由于每种操作对⼀个后缀有影响,区分⽅方案只要考虑第⼀个被影响的位置即可。
所以考虑剩下的n-1个集合的情况,则需要在其中选择k-1个集合放新的不同的数。最后就是不同的数的放入顺序不同也会导致答案不同,因此还要对k-1个数求一下排序数。
化简前的公式:
化简后的公式:
 
但是这题还一个比较坑的地方是n,m,mod都很大,lucas用不了,不能直接求组合数。
于是按照公式中的枚举变量k一步一步的来,先算k=1的情况,然后k=x的情况都可以由k=x-1的情况递推而来。
#include <iostream>
#define N 1000005
using namespace std;
const long long mod=;
long long ny[N+];
long long f(long long a,long long b)
{
long long ans=;
while(b>)
{
if(b%==)ans=(ans*a)%mod; b/=;
a=(a*a)%mod;
}
return ans;
} int main()
{
int t,tot=;
scanf("%d",&t);
for(int i=;i<=N;i++)ny[i]=f(i,mod-); while(t--)
{
long long n,m,ans,upper,last;
scanf("%lld %lld",&n,&m); upper=min(n,m);
ans=last=m%mod; for(int i=;i<=upper;i++)
{
last*=(m+-i)%mod;
last%=mod;
last*=ny[i-];
last%=mod;
last*=(n+-i)%mod;
last%=mod;
ans+=last;
ans%=mod;
} printf("Case #%d: %lld\n",++tot,ans);
}
return ;
}

Generation I的更多相关文章

  1. 论文阅读(Zhuoyao Zhong——【aixiv2016】DeepText A Unified Framework for Text Proposal Generation and Text Detection in Natural Images)

    Zhuoyao Zhong--[aixiv2016]DeepText A Unified Framework for Text Proposal Generation and Text Detecti ...

  2. Task set generation

    Task set generation for uni- and multiprocessors: “Unifying Fixed- and Dynamic-Priority Scheduling b ...

  3. 使用-MM生成include指令和依赖生成(make include directive and dependency generation with -MM)

    I want a build rule to be triggered by an include directive if the target of the include is out of d ...

  4. PHPNG (next generation)

    PHPNG (next generation) This page gives short information about development state of a new PHP branc ...

  5. test generation和MBIST

    The problem of test generation Random test generation Deterministic algorithm for test generation fo ...

  6. 关于conversation generation的论文笔记

    对话模型此前的研究大致有三个方向:基于规则.基于信息检索.基于机器翻译.基于规则的对话系统,顾名思义,依赖于人们周密设计的规则,对话内容限制在特定领域下,实际应用如智能客服,智能场馆预定系统.基于信息 ...

  7. 1094. The Largest Generation (25)

    A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level bel ...

  8. Case Study: Random Number Generation(翻译教材)

    很荣幸,经过三天的努力.终于把自己翻译的教材做完了,现在把它贴出来,希望能指出其中的不足.   Case Study: Random Number Generation Fig. 6.7  C++ 标 ...

  9. Index Generation

    Index Generation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 230   Accepted: 89 Des ...

  10. PowerDesigner15(16)在生成SQL时报错Generation aborted due to errors detected during the verification of the mod

    1.用PowerDesigner15建模,在Database—>Generate Database (或者用Ctrl+G快捷键)来生产sql语句,却提示“Generation aborted d ...

随机推荐

  1. codevs 1742 爬楼梯(水题日常)

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 小明家外面有一个长长的楼梯,共N阶.小明的腿很长,一次能跨过一或两阶.有一天,他 ...

  2. ubuntu 16.04 国内源安装docker

    1. 通过curl命令安装 检查是否安装curl root@ros-OptiPlex-3050:~# which curlroot@ros-OptiPlex-3050:~# 更新安装 root@ros ...

  3. Mybatis-Generator逆向生成Po,Mapper,XMLMAPPER(idea)

    前文有一篇手工生成的说明,地址: http://www.cnblogs.com/xiaolive/p/4874605.html, 现在这个补充一下在idea里面的自动版本的数据库逆向生成工具: 一.g ...

  4. java.sql.SQLException: Incorrect string value: '\xE6\x88\x91\xE7\x9A\x84...' for column 'groupName'

    java.sql.SQLException: Incorrect string value: '\xE6\x88\x91\xE7\x9A\x84...' for column 'groupName' ...

  5. softmax_loss.cu 和 softmax_loss.cpp源码

    #include <algorithm> #include <cfloat> #include <vector> #include "caffe/laye ...

  6. 计算机图形学(Conputer Graphics):非均匀有理B样条

    计算机图形学(Conputer Graphics):非均匀有理B样条 非均匀有理B样条(Non-Uniform Rational B-Spline)英文缩写,NURBS. 它是贝塞尔曲线的一个推广,而 ...

  7. House of Spirit(fastbin)

    0x01 fastbin fastbin所包含chunk的大小为16 Bytes, 24 Bytes, 32 Bytes, … , 80 Bytes.当分配一块较小的内存(mem<=64 Byt ...

  8. iOS开发--使用OpenSSL生成私钥和公钥的方法

    最近要在新项目中使用支付宝钱包进行支付,所以要调研对接支付宝的接口,支付宝开放平台采用了RSA安全签名机制,开发者可以通过支付宝   公钥验证消息来源,同时可使用自己的私钥对信息进行加密,所以需要在本 ...

  9. Greenplum/Deepgreen(集群/分布式)安装文档

    Deepgreen分布式安装文档 环境准备 1.安装VMware虚拟机软件,然后在VMware安装三台Linux虚拟机(使用centos7版本) 2.使用的虚拟机如下: 192.168.136.155 ...

  10. vue父组件获取子组件页面的数组 以城市三级联动为例

    父组件调用子组件 <Cselect ref="registerAddress"></Cselect> import Cselect from '../../ ...