同理BZOJ2440

二分答案,不过这次变成了统计含有平方因子的个数

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (ll i=j;i<=k;++i)
#define D(i,j,k) for (ll i=j;i>=k;--i)
#define ll long long
#define maxn 200005
int vis[maxn],mu[maxn],pr[maxn],top=0;
void init()
{
F(i,2,maxn-1)
{
if (!vis[i]) mu[i]=1,pr[++top]=i;
F(j,1,top)
{
if (i*pr[j]>=maxn) break;
vis[i*pr[j]]=1;
if (i%pr[j]==0) {mu[i*pr[j]]=0;break;}
mu[i*pr[j]]=-mu[i];
}
}
} ll solve(ll n)
{
ll t=sqrt(n),ret=0;
F(i,1,t) ret+=mu[i]*(n/(i*i));
return ret;
} ll k,l,r; int main()
{
init();
scanf("%lld",&k);
l=0;r=50000000000LL;
while (l<r)
{
ll mid=l+r>>1;
if (solve(mid)>=k) r=mid;
else l=mid+1;
}
printf("%lld\n",r);
}

  

VIJOS 1889 天真的因数分解 ——莫比乌斯函数的更多相关文章

  1. VIJOS 1889 天真的因数分解(莫比乌斯反演,容斥原理)

    https://vijos.org/p/1889 同BZOJ2440..,不过这题要求的是有因数因子的,所以莫比乌斯函数要稍微改一下 #include<algorithm> #includ ...

  2. vijos1889:天真的因数分解

    题目链接 vijos1889:天真的因数分解 题解 同bzoj2440: [中山市选2011]完全平方数 就是改成了求有平方因子数,依旧考虑二分,只是把容斥系数取一下相反数,也就是把莫比乌斯函数求一个 ...

  3. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  4. 51nod 1244 莫比乌斯函数之和

    题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积 ...

  5. 51nod 1240 莫比乌斯函数

    题目链接:51nod 1240 莫比乌斯函数 莫比乌斯函数学习参考博客:http://www.cnblogs.com/Milkor/p/4464515.html #include<cstdio& ...

  6. 51nod1244 莫比乌斯函数之和

    推公式.f[n]=1-∑f[n/i](i=2...n).然后递归+记忆化搜索.yyl说这叫杜教筛?时间复杂度貌似是O(n 2/3)的? #include<cstdio> #include& ...

  7. 51nod1240莫比乌斯函数

    莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.(据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数).   ...

  8. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  9. 数学(莫比乌斯函数):BZOJ 2440 完全平方数

    Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他数的热爱. 这 ...

随机推荐

  1. IOS typedef 函数指针的用法

    代码简化, 促进跨平台开发的目的. typedef 行为有点像 #define 宏,用其实际类型替代同义字. 不同点:typedef 在编译时被解释,因此让编译器来应付超越预处理器能力的文本替换. 用 ...

  2. jdbc接口的一种类比——打酱油

    jdbc很简单,这里只是为了方便自己的记忆.模型也许有缺陷,但本质是相同的. jdbc可以屏蔽数据库的底层的不同,让我们有能力用java语言统一访问不同的数据库.就像打酱油一样,可以去超市买,也可以去 ...

  3. Azure 项目构建 – 托管静态网站

    本课程主要介绍了如何在 Azure 平台上快速构建和部署基于 Azure Web 应用的静态托管网站, 实践讲解如何使用 Azure 门户创建 Web 应用, 部署静态网站源代码,设置自定义域名等. ...

  4. ABAP Netweaver, SAP Cloud Platform和Kubernetes的用户区分

    ABAP Dialog: Individual, interactive system access. System: Background processing and communication ...

  5. 简单明了理解Java移位运算符

    无须多言: @Test public void intro() { assertThat("应该相等", -1 >> 1, equalTo(-1)); assertTh ...

  6. UVA - 1279 Asteroid Rangers (动点的最小生成树)

    题意,有n个匀速动点,求最小生成树的改变次数. 一句话总结:动态问题的一般做法是先求出一个静态的解,然后求出解发生改变的事件,事件按照时间排序,依次处理. 先求出最开始的最小生成树(MST),当MST ...

  7. 一、submit和button区别

    一.submit和button区别 一.HTTP方法:GET.POST

  8. CAD交互绘制云线批注(网页版)

    js中实现代码说明: 动态拖放时的绘制事件: function DoDynWorldDrawFun(dX,dY,pWorldDraw,pData) { //自定义实体的GUID标识符 var sGui ...

  9. shelll脚本,常见的脚本题目。

    [root@localhost wyb]# cat 2quan.sh #!/bin/bash #写一个脚本,先要求输入用户名,然后让他输入一个数字,输的如果是数字给输出yes,不是数字,输出no #然 ...

  10. POJ 3080 Blue Jeans、POJ 3461 Oulipo——KMP应用

    题目:POJ3080 http://poj.org/problem?id=3080 题意:对于输入的文本串,输出最长的公共子串,如果长度相同,输出字典序最小的. 这题数据量很小,用暴力也是16ms,用 ...