POJ 1258 Agri-Net(Prim求最小生成树)
|
Agri-Net
Description
Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course.
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms. Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm. The distance between any two farms will not exceed 100,000. Input
The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines
of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem. Output
For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.
Sample Input 4 Sample Output 28 Source |
[Submit] [Go Back] [Status]
[Discuss]
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题。我们首先用通俗的语言解释它的定义:
对于有n个节点的有权无向连通图,寻找n-1条边,恰好将这n个节点相连,并且这n-1条边的权值之和最小。
对于MST问题,通常常见的解法有两种:Prim算法 或者 Kruskal算法+并查集
对于最小生成树,一定要注意其定义是在无向连通图的基础上,如果在有向图中,那么就需要另外的分析,单纯用无向图中的方法是不能得出正确解的,这一点我在比赛中确实吃过亏
好了,进入正题:
Prim算法:(基于点的贪心思路)由于是基于点的算法,因此适合于稠密图,一下给出代码没有经过堆优化,时间复杂度为O(N^2)
记原图为G,生成树图为MST,其中G的节点个数为n个
算法描述如下:
- 任取G中的一点,加入MST中——这一步的作用是选择一个节点作为整个算法的起点
- 采用贪心策略,将刚刚加入的节点记为u,以u为中心,检查与u相连且没有加入MST的节点(未访问过的节点),选择权值最小的边,如果有多条边的权值均最小,则任取一条边。——贪心策略,选择局部最优
- 将所选择的边中,不在MST中的那个节点,加入MST——举例来说,比如(u,v)是当前与u相连,v不再MST中,且权值最小的边,则边(u,v)被选中,并将v加入MST。
- 如果步骤2-3被执行了n-1次,则退出,反之则返回到步骤2。——由于Prim算法初始化时加入了起点,而步骤2-3每执行一次都会加入一个新的节点,所以只需判断执行次数。
#include<iostream>
#include<stdio.h>
#include<cstdio>
#include<algorithm>
#include<string.h>
using namespace std;
//inf为路径权上界,maxn为图的临接矩阵的点数
//vis是记录是否访问过,cost[i]记录到达第i个节点的最小代价
const int inf=0x7fffffff,maxn=101;
int G[maxn][maxn],vis[maxn],cost[maxn],n;
//len为MST长度
int prim(){
memset(vis,0,sizeof(vis));
//加入起始节点
int pos=1,min=inf,len=0,cnt=n;
vis[1]=1;
for(int v=2;v<=n;v++)cost[v]=G[pos][v];
//加入剩余n-1个节点
while(--cnt){
for(int i=1;i<=n;i++)if(!vis[i]&&cost[i]<min){
pos=i;min=cost[i];
}
len+=min;vis[pos]=1;
//以新加入的节点为中心,更新权值信息
for(int i=1;i<=n;i++)if(!vis[i]&&G[pos][i]<cost[i])
cost[i]=G[pos][i];
min=inf;
}
return len;
}
int main()
{
//freopen("in.txt","r",stdin);
//int n;
while(cin>>n&&n)
{
memset(cost,0,sizeof(cost));
memset(G,0,sizeof(G));
int i,j;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
cin>>G[i][j];
}
}
cout<<prim()<<endl;
}
}
POJ 1258 Agri-Net(Prim求最小生成树)的更多相关文章
- POJ 1258:Agri-Net Prim最小生成树模板题
Agri-Net Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 45050 Accepted: 18479 Descri ...
- poj 1258 建光迁问题 最小生成树
题意:给全村建光纤,求花费最小 思路:最小生成树,树相对于图来说就是没有环 m用来存图 v判断是否访问 low用来存两点间的最短距离 给low赋值 for(i=1;i<=n;i++){if(i ...
- Codeforces 632F - Magic Matrix(暴力 bitset or Prim 求最小生成树+最小瓶颈路)
题面传送门 开始挖老祖宗(ycx)留下来的东西.jpg 本来想水一道紫题作为 AC 的第 500 道紫题的,结果发现点开了道神题. 首先先讲一个我想出来的暴力做法.条件一和条件二直接扫一遍判断掉.先将 ...
- POJ 1258 Agri-Net(Prim算法)
题意:n个农场,求把所有农场连接起来所需要最短的距离. 思路:prim算法 课本代码: //prim算法 #include<iostream> #include<stdio.h> ...
- POJ 1258 Agri-Net(Prim)
( ̄▽ ̄)" #include<iostream> #include<cstdio> #include<cmath> #include<algori ...
- prim求最小生成树
一直以来只会Kruskal prim和dijkstra很像 只不过prim维护的是最短的边,而dijkstra维护的是最短的从起点到一个点的路径 同时prim要注意当前拓展的边是没有拓展过的 可以用堆 ...
- HDU 3371 kruscal/prim求最小生成树 Connect the Cities 大坑大坑
这个时间短 700多s #include<stdio.h> #include<string.h> #include<iostream> #include<al ...
- POJ 1258 Agri-Net (prim水题)
Agri-Net Time Limit : 2000/1000ms (Java/Other) Memory Limit : 20000/10000K (Java/Other) Total Subm ...
- Poj 2421 Constructing Roads(Prim 最小生成树)
题意:有几个村庄,要修最短的路,使得这几个村庄连通.但是现在已经有了几条路,求在已有路径上还要修至少多长的路. 分析:用Prim求最小生成树,将已有路径的长度置为0,由于0是最小的长度,所以一定会被P ...
随机推荐
- weblogic集群的资料
博客分类: weblogic 其实网上关于weblogic集群的资料非常多[大部分都是从创建新的domain开始,我这篇先介绍怎么样把原本普通的domain改造为集群环境],如果觉得不够,可以啃web ...
- jquery显示和隐藏元素
1.$('#id').show()/$('#id').hide()/$('#id').toggle() 2.$('#id').css('display','none')/$('#id').css('d ...
- asp.net core 集成JWT(一)
[什么是JWT] JSON Web Token(JWT)是目前最流行的跨域身份验证解决方案. JWT的官网地址:https://jwt.io/ 通俗地来讲,JWT是能代表用户身份的令牌,可以使用JWT ...
- hibernate查询之Criteria实现分页方法(GROOVY语法)
public int searchTest(String name, Integer pageIndex, List<Test> resultList){ def criteria = T ...
- POJ3264Balanced Lineup(最基础的线段树)
採用一维数组建树. (由于一维数组建的是全然二叉树,时间上比用孩子节点指针建树慢.只是基本能够忽略=-=) #include<iostream> #include<cstdio> ...
- 初探swift语言的学习笔记十一(performSelector)
作者:fengsh998 原文地址:http://blog.csdn.net/fengsh998/article/details/35842441 转载请注明出处 假设认为文章对你有所帮助,请通过留言 ...
- Redis管理key命令
1 DEL key该命令用于在 key 存在时删除 key. 2 DUMP key 序列化给定 key ,并返回被序列化的值. 3 EXISTS key 检查给定 key 是否存在. 4 EXPIRE ...
- CUDA编程(十)使用Kahan's Summation Formula提高精度
CUDA编程(十) 使用Kahan's Summation Formula提高精度 上一次我们准备去并行一个矩阵乘法.然后我们在GPU上完毕了这个程序,当然是非常单纯的把任务分配给各个线程.也没有经过 ...
- 2016/3/24 ①数据库与php连接 三种输出fetch_row()、fetch_all()、fetch_assoc() ②增删改时判断(布尔型) ③表与表之间的联动 ④下拉菜单 ⑤登陆 三个页面
①数据库与php连接 图表 header("content-type:text/html;charset=utf-8"); //第一种方式: //1,生成连接,连接到数据库上的 ...
- 2016/2/24 css画三角形 border的上右下左的调整 以及内区域的无限变小 边界透明
网页因为 CSS 而呈现千变万化的风格.这一看似简单的样式语言在使用中非常灵活,只要你发挥创意就能实现很多比人想象不到的效果.特别是随着 CSS3 的广泛使用,更多新奇的 CSS 作品涌现出来. 今天 ...