Description

有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数。两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏。问先手是否必胜。

Input

第一行u表示数据组数。对于每组数据,第一行N表示石子堆数,第二行N个数ai表示第i堆石子的个数(a1<=a2<=……<=an)。 1<=u<=10 1<=n<=1000 0<=ai<=10000

Output

u行,若先手必胜输出TAK,否则输出NIE。

Sample Input

2

2

2 2

3

1 2 4

Sample Output

NIE

TAK


此题显然博弈

啥?你说你不会博弈?那我就安利一下自己的博客咯--->浅谈算法——博弈论

好,我们回归正题。

这题麻烦的地方在于需要保持两堆石子之间的大小关系,但是我们稍加思考,发现本题就是要使得两堆石子间的差值要非负。

我们继续观察一下,如果说移走第i堆石子,那么就会将第i-1堆与第i堆石子的差值增大,但是会使第i堆与第i+1堆石子的差值减小,而且他们的增量的绝对值是一样的!

没错,阶梯Nim!我们只需要对这些石子堆之间的差值求一遍阶梯Nim即可。

记得注意移动的方向,奇偶性判断要注意。

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
int main(){
for (int Data=read();Data;Data--){
int n=read(),res=0,last=0;
for (int i=1;i<=n;i++){
int x=read();
if (!((i&1)^(n&1))) res^=x-last;
last=x;
}
printf(!res?"NIE":"TAK");
putchar('\n');
}
return 0;
}

[POI2009]石子游戏Kam的更多相关文章

  1. BZOJ 1115: [POI2009]石子游戏Kam

    1115: [POI2009]石子游戏Kam Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 883  Solved: 545[Submit][Stat ...

  2. bzoj 1115: [POI2009]石子游戏Kam -- 博弈论

    1115: [POI2009]石子游戏Kam Time Limit: 10 Sec  Memory Limit: 162 MB Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前 ...

  3. 【BZOJ1115】[POI2009]石子游戏Kam 阶梯博弈

    [BZOJ1115][POI2009]石子游戏Kam Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要 ...

  4. [BZOJ1115][POI2009]石子游戏Kam解题报告|阶梯博弈

    有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜. 首先 ...

  5. [BZOJ 1115] [POI2009] 石子游戏Kam 【阶梯博弈】

    题目链接:BZOJ - 1115 题目分析 首先看一下阶梯博弈: 阶梯博弈是指:初始有 n 堆石子,每次可以从任意的第 i 堆拿若干石子放到第 i - 1 堆.最终不能操作的人失败. 解法:将奇数位的 ...

  6. bzoj1115: [POI2009]石子游戏Kam

    Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏 ...

  7. BZOJ 1115: [POI2009]石子游戏Kam [阶梯NIM]

    传送门 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜 ...

  8. BZOJ 1115 [POI2009]石子游戏Kam(阶梯博弈)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1115 [题目大意] 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数. ...

  9. 【bzoj1115】[POI2009]石子游戏Kam(博弈论)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1115 观察问题,我们能发现前后相邻两堆石子的数量差一定非负,而我们在第i堆石子中移走k ...

  10. BZOJ1115 [POI2009]石子游戏Kam 【博弈论——阶梯游戏】

    题目 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜. ...

随机推荐

  1. zmq.error.ZMQError: Address already in use

    1.如下代码,启动的时候python app.py会报如题的错误 app.py #!/user/bin python # -*- coding:utf-8 -*- import os from dat ...

  2. 【Nginx】Nginx事件模块

    一.事件处理框架概述 事件处理框架所要解决的问题是如何收集.管理.分发事件.事件以网络事件和定时器事件为主,而网络事件中以TCP网络事件为主.事件处理框架需要在不同的操作系统内核中选择一种事件驱动机制 ...

  3. Robot Framework操作

    Robot Framework 介绍 RobotFramework是一款基于python的开源自动化测试框架,遵守Apache License 2.0协议,在此协议下所有人都可以免费开发和使用.因为R ...

  4. 找中位数O(n)算法

    题目描写叙述: 给定一个未排序的整数数组,找到当中位数. 中位数是排序后数组的中间值,假设数组的个数是偶数个.则返回排序后数组的第N/2个数. 例子 给出数组[4, 5, 1, 2, 3], 返回 3 ...

  5. I2S简单学习

    以下只是个人看法,有不妥之处,请批评指出. 参考资料:http://blog.csdn.net/ce123_zhouwei/article/details/6919954: 一.I2S接口简述 I²S ...

  6. A Simple Example About Privileged Methods in JavaScript

    Douglas Crockford classified the "class methods" in JavaScript into three types: private, ...

  7. 2016/05/17 thinkphp3.2.2 ① Ajax 使用 ②前端验证

    显示效果: ①Ajax使用:   注意传值的所有过程用的是小写,及时数据库列的名称中有大写字母 控制器部分: AjaxController.class.php <?php namespace H ...

  8. java8--多线程(java疯狂讲义3复习笔记)

    多线程这块,平时用的框架里都封装好了,只有写批处理和工具包时用过几次.现在水平仅仅限于会用的程度,需要全面深入学习多线程. 主要内容:创建线程,启动线程,控制线程,多线程的同步,线程池,使用线程安全的 ...

  9. linux 下RTL8723/RTL8188调试记录(命令行)【转】

    本文转载自:http://blog.h5min.cn/wuhongxin123/article/details/41820877 本文是在正确安装好wifi驱动后对系统进行的配置. 1.   配置wp ...

  10. svn问题:在eclipse里面使用SVN,怎么实现版本回滚呢?

    共有4个答案 我要回答» JustForFly 回答于 2012-04-27 10:20 举报   想回到SVN服务器端的最新版本就使用 team->还原.. 想回到SVN服务器端的其它版本使用 ...