POJ2486 Apple Tree 【树上背包】
一句话题意:一棵树,一共n个点,每个点上有一个权值,求从1出发,走k步,最多能遍历到的权值。可以往回走。
第一(二)道树上背包题,先是看了dalao的题解,改了一点就过样例了。然而....TLE??? 改了挺久发现由于多组数据且没有“0 0”的输入,如果不在读入的时候加“~”或“EOF”就会死循环,从而导致TLE。
状态设计:设f[i][j][0/1]为以i为根的子树上,走j步,能得到的最大权值(0/1的表示会在转移方程中描述) 考虑:(此处参考dalao@zubizakeli ,侵删qwq)每个节点在最终答案中的类型:1,不经过;2,经过但不返回;3,经过且返回 (返回的定义是最终的停止节点不位于该节点的子树中) 那么可以进行转移:

之后便是一些细节问题:给数组赋初值(从0开始!走0步),更新head数组。
实现还是比较简单的啦。
code
#include<cstdio>
#include<algorithm>
#include<cstring> using namespace std; int n,k,tot;
int w[],head[];
int f[][][];
struct node{
int to,next,val;
}edge[]; void add(int x,int y)
{
edge[++tot].to=y;
edge[tot].next=head[x];
head[x]=tot;
} void read(int &x)
{
x=;
char ch=getchar();
bool flag=false;
while(ch<''||ch>'') flag|=(ch=='-'),ch=getchar();
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
x=flag ? -x : x;
} void TreeDp(int u,int fa)
{
for(int i=;i<=k;i++) f[u][i][]=w[u],f[u][i][]=w[u];
for(int i=head[u];i;i=edge[i].next)
{
int v=edge[i].to;
if(v==fa) continue;
TreeDp(v,u);
for(int kk=k;kk>=;kk--)
for(int j=;j<=kk;j++)
{
if(kk>=j+) f[u][kk][]=max(f[u][kk][],f[v][j][]+f[u][kk-j-][]);
if(kk>=j+) f[u][kk][]=max(f[u][kk][],f[v][j][]+f[u][kk-j-][]);
if(kk>=j+) f[u][kk][]=max(f[u][kk][],f[v][j][]+f[u][kk-j-][]);
}
}
} void init()
{
memset(f,,sizeof(f));
memset(head,,sizeof(head));
tot=;
} int main()
{
while(scanf("%d%d",&n,&k)!=EOF)
{
for(int i=;i<=n;i++) read(w[i]);
for(int i=;i<=n-;i++)
{
int x=,y=;
read(x),read(y);
add(x,y),add(y,x);
}
TreeDp(,-);
printf("%d\n",max(f[][k][],f[][k][]));
init();
}
return ;
}
小结:分类讨论常常也是解题重要的突破口呐。
POJ2486 Apple Tree 【树上背包】的更多相关文章
- POJ2486 Apple Tree(树形DP)
题目大概是一棵树,每个结点都有若干个苹果,求从结点1出发最多走k步最多能得到多少个苹果. 考虑到结点可以重复走,容易想到这么个状态: dp[u][k][0]表示在以结点u为根的子树中走k步且必须返回u ...
- POJ2486 Apple Tree
Time Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %lld & %llu Description Wshxzt is ...
- CodeForces 812E Sagheer and Apple Tree 树上nim
Sagheer and Apple Tree 题解: 先分析一下, 如果只看叶子层的话. 那么就相当于 经典的石子问题 nim 博弈了. 那我们看非叶子层. 看叶子层的父亲层. 我们可以发现, 如果从 ...
- POJ2486 Apple Tree(树形背包)
从每个节点u出发后有两种情况:回到u和不回到u. dp数组设为三维,第一维是节点编号,第二维是从该节点开始走的步数,第三维1/0 表示是否回到该节点. 可以回到时:dp[u][j][1]=max(dp ...
- poj2486 Apple Tree (树形dp+分组背包)
题目链接:https://vjudge.net/problem/POJ-2486 题意:一棵点权树,起点在1,求最多经过m条边的最大点权和. 思路: 树形dp经典题.用3维状态,dp[u][j][0/ ...
- POJ-2486 Apple Tree (树形DP)
题目大意:一棵点带权有根树,根节点为1.从根节点出发,走k步,求能收集的最大权值和. 题目分析:从一个点向其某棵子树出发有三种可能的情况: 1.停留在那棵子树上: 2.再回到这个点: 3.经过这个点走 ...
- poj2486 Apple Tree (树形dp)
题意:有一颗苹果树,树上的u节点上有num[u]个苹果,树根为1号节点,囧king从根开始走,没走到一个节点就把接点上的苹果吃光,问囧king在不超过k步的情况下最多吃多少个苹果. 解题思路:处理出两 ...
- bzoj4987 Tree 树上背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4987 题解 一道还不错的题咯. 很容易发现一个结论:这 \(k\) 个点构成的一定是一个连通块 ...
- POJ2486 - Apple Tree(树形DP)
题目大意 给定一棵n个结点的树,每个结点上有一定数量的苹果,你可以从结点1开始走k步(从某个结点走到相邻的结点算一步),经过的结点上的苹果都可以吃掉,问你最多能够吃到多少苹果? 题解 蛋疼的问题就是可 ...
随机推荐
- 动态规划:Monkey and Banana
Problem Description A group of researchers are designing an experiment to test the IQ of a monkey. T ...
- java.lang.ClassNotFoundException: org.springframework.web.servlet.DispatcherServlet
新建Maven 项目的时候报错: java.lang.ClassNotFoundException: org.springframework.web.servlet.DispatcherServlet ...
- 如何在不允许联网的环境下使用Maven开发
前言:Maven的运行机理是:Maven核心组件先去本地的.m2目录下的库中去寻找依赖或者插件,如果本地库里没有,如果配置了私服则上私服去下载依赖或者插件,如果私服上没有,则上中央服务等Maven服务 ...
- 一句话从MySQL导出CSV文件
mysql -h <host> -u<user> -p<passport> crm -e "select ....." | csvcut -t ...
- 【转】Linux下添加新硬盘,分区及挂载
原文:http://blog.chinaunix.net/uid-25829053-id-3067619.html ------------------------------------------ ...
- CentOS 5 全功能服务器搭建
转自: http://www.php-oa.com/2007/12/27/centos-www.html 转:主要做为历史记录,以后用.另外很少见这么好的编译的文章,其实我不推荐用编译安装.但这个文章 ...
- jsoncpp的api简要说明
1 jsoncpp的api简要说明 1,解析(json字符串转为对象) std::string strDataJson; Json::Reader JReader; Json::Value JObj ...
- 解决javah生成.h头文件找不到找不到android.support.v7.app.AppCompatActivity的问题
问题描写叙述: 在使用Android Studio进行JNI开发时,须要使用javah生成C或C++的头文件,可是可能会遇到: 错误: 无法訪问android.support.v7.app.AppCo ...
- [LeetCode]Two Sum 【Vector全局指针的使用】
无序数组返回两个元素和为给定值的下标. tricks:无序.返回下标增序.返回的是原始数组的下标. vector<int>*pa; bool cmp(int x,int y){ retur ...
- JAVA注解引发的思考
自从JDK5開始Java開始添加了对元数据(MetaData)的支持,也就是注解(Annotation),到JDK7时已经有四种基本注解,新添加了一种@SafeVarargs. @Override注解 ...