COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION

Figure 17.4 depicts in general terms the organization of a multiprocessor system.
There are two or more processors. Each processor is self-contained, including a
control unit, ALU, registers, and, typically, one or more levels of cache. Each pro-
cessor has access to a shared main memory and the I/O devices through some form
of interconnection mechanism. The processors can communicate with each other
through memory (messages and status information left in common data areas). It
may also be possible for processors to exchange signals directly. The memory is

often organized so that multiple simultaneous accesses to separate blocks of mem-
ory are possible. In some configurations, each processor may also have its own pri-
vate main memory and I/O channels in addition to the shared resources.

The most common organization for personal computers, workstations, and
servers is the time-shared bus. The time-shared bus is the simplest mechanism for
constructing a multiprocessor system (Figure 17.5). The structure and interfaces are
basically the same as for a single-processor system that uses a bus interconnection.
The bus consists of control, address, and data lines. To facilitate DMA transfers
from I/O subsystems to processors, the following features are provided:

• Addressing: It must be possible to distinguish modules on the bus to deter-
mine the source and destination of data.
• Arbitration: Any I/O module can temporarily function as “master.” A mecha-
nism is provided to arbitrate competing requests for bus control, using some
sort of priority scheme.
• Time-sharing: When one module is controlling the bus, other modules are
locked out and must, if necessary, suspend operation until bus access is achieved.

hese uniprocessor features are directly usable in an SMP organization. In
this latter case, there are now multiple processors as well as multiple I/O processors
all attempting to gain access to one or more memory modules via the bus.

The bus organization has several attractive features:
• Simplicity: This is the simplest approach to multiprocessor organization. The
physical interface and the addressing, arbitration, and time-sharing logic of
each processor remain the same as in a single-processor system.
• Flexibility: It is generally easy to expand the system by attaching more proces-
sors to the bus.
• Reliability: The bus is essentially a passive medium, and the failure of any
attached device should not cause failure of the whole system.
The main drawback to the bus organization is performance. All memory ref-
erences pass through the common bus. Thus, the bus cycle time limits the speed
of the system. To improve performance, it is desirable to equip each processor
with a cache memory. This should reduce the number of bus accesses dramatically.
Typically, workstation and PC SMPs have two levels of cache, with the L1 cache
internal (same chip as the processor) and the L2 cache either internal or external.
Some processors now employ a L3 cache as well.
The use of caches introduces some new design considerations. Because each
local cache contains an image of a portion of memory, if a word is altered in one

cache, it could conceivably invalidate a word in another cache. To prevent this, the
other processors must be alerted that an update has taken place. This problem is
known as the cache coherence problem and is typically addressed in hardware rather
than by the operating system. We address this issue in Section 17.4.

Organization SYMMETRIC MULTIPROCESSORS的更多相关文章

  1. SYMMETRIC MULTIPROCESSORS

    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION As demands for perfor ...

  2. Multiprocessor Operating System Design Considerations SYMMETRIC MULTIPROCESSORS

    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION An SMP operating syst ...

  3. parallelism

    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION Traditionally, the co ...

  4. Massively parallel supercomputer

    A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures ba ...

  5. QEMU中smp,socket,cores,threads几个参数的理解

    在用QEMU创建KVM guest的时候,为了指定guest cpu资源,用到了-smp, -sockets, -cores, -threads几个参数, #/usr/bin/qemu-system- ...

  6. c++多线程同步使用的对象

    线程的同步 Critical section(临界区)用来实现“排他性占有”.适用范围是单一进程的各线程之间.它是: ·         一个局部性对象,不是一个核心对象. ·         快速而 ...

  7. 第4章 同步控制 Synchronization ----同步机制的摘要

    同步机制摘要Critical Section Critical section(临界区)用来实现"排他性占有".适用范围是单一进程的各线程之间.它是:  一个局部性对象,不是一个核 ...

  8. 线程的同步控制(Synchronization)

    临界区(Critical Sections) 摘要 临界区(Critical Section) 用来实现"排他性占有".适合范围时单一进程的各线程之间. 特点 一个局部对象,不是一 ...

  9. 分布式计算课程补充笔记 part 1

    ▶ 高性能计算机发展历程 真空管电子计算机,向量机(Vector Machine),并行向量处理机(Parallel Vector Processors,PVP),分布式并行机(Parallel Pr ...

随机推荐

  1. MySQL学习笔记(1/2)

    数据库的学习要求:1.为项目设计表:2.使用SQL(Structure Query Language)语句(SQL编程).其他的都可以使用工具完成. SQL: DDL:创建库.创建表 DML:对数据的 ...

  2. iOS,监听tableVIew的偏移量

    1. 添加监听 [self.tableView addObserver:self forKeyPath:@"contentOffset" options:NSKeyValueObs ...

  3. sql对于between和时间

    在写时间条件 ,比如 把2014/3/1 到2014/3/31这个时间段做为条件 的话,很多人都会写成这样 select date from table where date between '201 ...

  4. [MongoDB]MongoDB与JAVA结合使用CRUD

    汇总: 1. [MongoDB]安装MongoDB2. [MongoDB]Mongo基本使用:3. [MongoDB]MongoDB的优缺点及与关系型数据库的比较4. [MongoDB]MongoDB ...

  5. [转载]使用PyQt来编写第一个Python GUI程序

    转载自:http://python.jobbole.com/81276/ 英文版出处:http://pythonforengineers.com/your-first-gui-app-with-pyt ...

  6. vaadin_demo

    简介:主要一个登陆界面,登陆后跳转到主界面: 主界面功能是点新增,新增人员数据会保存到显示列表中: 一个很简单的demo 下面是截图

  7. Python学习笔记(二)——HelloWorld

    一.交互式化环境下书写代码 二.使用文本编辑器编辑.py文件 1.建议,使用Nodepad++,好看,免费,度娘直接搜素即可. 2.编写代码 3.保存为.py结尾的文件 4.使用cmd,打开到文件所在 ...

  8. 对JavaScript中异步同步机制以及线程深入了解

    今天在网上看到各种对Js异步同步单线程多线程的讨论 经过前辈们的洗礼 加上鄙人小小的理解 就来纸上谈兵一下吧~ Js本身就是单线程的 至于为什么Js是单线程的 那就要追溯到Js的历史了 总而言之 由于 ...

  9. dedecms头部常用:标题,栏目描述,关键词

    调用SEO标题:<title>{dede:field.title/}_{dede:field.seotitle /}-{dede:global.cfg_webname/}</titl ...

  10. Java 根据两个经纬度坐标计算距离

    public class Distance{ private static final double EARTH_RADIUS = 6378137;    private static double  ...