You are given two rectangles on a plane. The centers of both rectangles are located in the origin of coordinates (meaning the center of the rectangle's symmetry). The first rectangle's sides are parallel to the coordinate axes: the length of the side that is parallel to the Ox axis, equals w, the length of the side that is parallel to the Oy axis, equals h. The second rectangle can be obtained by rotating the first rectangle relative to the origin of coordinates by angle α.

Your task is to find the area of the region which belongs to both given rectangles. This region is shaded in the picture.

Input

The first line contains three integers w, h, α (1 ≤ w, h ≤ 106; 0 ≤ α ≤ 180). Angle α is given in degrees.

Output

In a single line print a real number — the area of the region which belongs to both given rectangles.

The answer will be considered correct if its relative or absolute error doesn't exceed 10 - 6.

Examples

Input

1 1 45

Output

0.828427125

Input

6 4 30

Output

19.668384925

Note

The second sample has been drawn on the picture above.

思路:

根据对称性,

我们把矩阵转化为w>=h 形状的。

又根据对称性,

如果角度a是钝角,可以把a变为与a互补的锐角,不影响答案值。

如图所示,我们只需要三角形1和2的面积就可以求的阴影部分面积,

那么根据绿色的线我们可以得出

x+z+t=w

根据紫色的线我们可以的出:

y+v+u=h

而根据三角形关系

我们可以得到 x,y与z的关系,u,t与v的关系。

两个方程,两个未知量(z,v)可以求出z和v,从而可以得出答案。

还有一个需要特殊判断的情况是:

这种阴影部分的面积是一个蓝色的菱形,那么我们根据粉红色区域的三角形关系可以的出答案。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
typedef long double ld;
ld w, h, a;
const ld pi = acos(-1);
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
cin >> w >> h >> a;
if (h > w) {
swap(h, w);
}
a = min(a, 180.0 - a);
a /= 180;
a *= pi;
ld z = (w - (h * sin(a)) / (1.0 + cos(a))) / (1.0 + cos(a) - sin(a) * sin(a) / (1 + cos(a)));
ld v = (h - z * sin(a)) / (1.0 + cos(a));
if (v > 0.0) {
ld x = z * cos(a);
ld y = z * sin(a);
ld ans = w * h;
ans -= x * y;
x = v * cos(a);
y = v * sin(a);
ans -= x * y;
cout << fixed << setprecision(7) << ans << endl;
} else {
v = h / sin(a);
ld x = v * cos(a / 2.0);
ld y = v * sin(a / 2.0);
ld ans = x * y * 2.0;
cout << fixed << setprecision(7) << ans << endl;
} return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Rectangle Puzzle CodeForces - 281C (几何)的更多相关文章

  1. Codeforces Round #172 (Div. 2) C. Rectangle Puzzle 数学题几何

    C. Rectangle Puzzle Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/281/p ...

  2. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  3. CodeForces 303B Rectangle Puzzle II

    题意: 给定一个靠着坐标轴长为n,宽为m的矩形和 矩形中的一个点A,求在这个矩形内部一个 长宽比为a/b的小矩形,使这个小矩形的长宽尽量大使点A在小矩形内部,并且点A尽量靠近小矩形的中心 CF的思维题 ...

  4. An overnight dance in discotheque CodeForces - 814D (几何)

    大意: 给定n个不相交的圆, 求将n个圆划分成两部分, 使得阴影部分面积最大. 贪心, 考虑每个连通块, 最外层大圆分成一部分, 剩余分成一部分一定最优. #include <iostream& ...

  5. Bash and a Tough Math Puzzle CodeForces - 914D (线段树二分)

    大意:给定序列, 单点修改, 区间询问$[l,r]$内修改至多一个数后$gcd$能否为$x$ 这题比较有意思了, 要注意到询问等价于$[l,r]$内最多有1个数不为$x$的倍数 可以用线段树维护gcd ...

  6. [CodeForces]CodeForces 13D 几何 思维

    大致题意: 给出N个红点和M个蓝点,问可以有多少个红点构成的三角形,其内部不含有蓝点 假设我们现在枚举了一条线段(p[i],p[j]),我们可以记录线段下方满足(min(p[i].x,p[j].x)& ...

  7. Lock Puzzle CodeForces - 936C (构造)

    大意: 给定字符串$s$,$t$, 每次操作可以将$S=AB$变为$S=B^RA$, 要求$3n$次操作内将$s$变为$t$. #include <iostream> #include & ...

  8. CodeForces - 849B 几何

    题意:给n个点,问是否能两条平行线覆盖所有的点 思路:因为要求全部覆盖,所以我们第一个点肯定是会入其中一条直线,其实只用判前三个点的所有情况即可 #include<stdio.h> #in ...

  9. B - Bash and a Tough Math Puzzle CodeForces - 914D (线段树的巧妙应用)

    题目大意:当输入2时,将p处的点的值修改为x, 当输入1时,判断区间[L,R]的gcd是否几乎正确,几乎正确的定义是最多修改一个数,使得区间[L,R]的gcd为x. 题解:用线段树维护一个gcd数组, ...

随机推荐

  1. 安装最新docker-ce失败解决

    报错 下载 检查本地是否已经安装 rpm -qa |grep containerd.io 如果有低版本的,卸载即可. 安装新版的containerd.io软件包 wget https://downlo ...

  2. LeetCode.1200-最小绝对值差(Minimum Absolute Difference)

    这是小川的第次更新,第篇原创 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第268题(顺位题号是1200).给定一个由不同的整数组成的数组arr,找到所有对元素,其中任意两个元素的绝 ...

  3. 什么是MapReduce?

    [学习笔记] 什么是MapReduce?马 克-to-win @ 马克java社区:1)MapReduce是面向大数据并行程序设计的模型和方法,这一点很像我们前面讲的MVC,MVC解决动态网站问题而 ...

  4. win7 开远程记录

    1,HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server\Wds\rdpwd\Tds\tcp HKEY_LOCAL_M ...

  5. kubernetes的namespaces总是Terminating

    0.尝试强制删除不行 删除时带上–force --grace-period=0参数 ,无法删除:kubectl delete namespace rook-ceph --force --grace-p ...

  6. ZOJ Problem Set - 1003

    1.翻译参考 http://www.cnblogs.com/woodfish1988/archive/2006/11/10/556926.html 2.代码参考 http://www.cnblogs. ...

  7. ULB

    https://docs.ucloud.cn/network/ulb/intro/whatisulb 创建ulb ulb里创建vserver, 设置监听端口 配置后端转发节点(服务节点) 在服务节点上 ...

  8. mysql innodb索引原理

    聚集索引(clustered index) innodb存储引擎表是索引组织表,表中数据按照主键顺序存放.其聚集索引就是按照每张表的主键顺序构造一颗B+树,其叶子结点中存放的就是整张表的行记录数据,这 ...

  9. 10.hive安装

    上传hive安装包并解压 给hive设置一个软链接 给hive配置环境变量 sudo vim /etc/profile #hive export HIVE_HOME=/opt/modules/hive ...

  10. hdu 6601 区间条件极值 - 区间 最大 三角形周长

    题目传送门//res tp hdu 目的 对长度为n的区间,给定q个子区间,求其元素能构成三角形的最大周长.有多组测试. n 1e5 q 1e5 ai [1,1e9] (i∈[1,n]); 数据结构 ...