airflow当触发具有多层subDAG的任务的时候,出现[Duplicate entry ‘xxxx’ for key dag_id]的错误的问题处理
当触发一个具有多层subDAG的任务时,会发现执行触发的task任务运行失败,但是需要触发的目标DAG已经在运行了,dag log 错误内容:
[2019-11-21 17:47:56,825] {base_task_runner.py:115} INFO - Job 2: Subtask peak_agg.daily_device_app_tx sqlalchemy.exc.IntegrityError: (_mysql_exceptions.IntegrityError) (1062, "Duplicate entry 'pcdn_export_agg_peak.split_to_agg_9.pcdn_agg-2019-11-21 09:47:00' for key 'dag_id'")
[2019-11-21 17:47:56,825] {base_task_runner.py:115} INFO - Job 2: Subtask peak_agg.daily_device_app_tx [SQL: INSERT INTO dag_run (dag_id, execution_date, start_date, end_date, state, run_id, external_trigger, conf) VALUES (%s, %s, %s, %s, %s, %s, %s, %s)]
[2019-11-21 17:47:56,825] {base_task_runner.py:115} INFO - Job 2: Subtask peak_agg.daily_device_app_tx [parameters: ('pcdn_export_agg_peak.split_to_agg_9.pcdn_agg', <Pendulum [2019-11-21T09:47:00+00:00]>, datetime.datetime(2019, 11, 21, 9, 47, 56, 409081, tzinfo=<Timezone [UTC]>), None, 'running', 'tri_peak_agg-daily_device_app_tx-for:2019-11-20-on:20191120013000.000000', 1, b'\x80\x04\x95&\x01\x00\x00\x00\x00\x00\x00}\x94(\x8c\x03env\x94\x8c\x03dev\x94\x8c\x08start_ts\x94J\x80=\xd5]\x8c\x06end_ts\x94J\xa4K\xd5]\x8c\tstat_ ... (275 characters truncated) ... \x8c\x06device\x94as\x8c\tlog_level\x94\x8c\x04INFO\x94\x8c\rseries_chunks\x94Kd\x8c\tsp_chunks\x94J@B\x0f\x00\x8c\nsp_schunks\x94J\xa0\x86\x01\x00u.')]
[2019-11-21 17:47:56,825] {base_task_runner.py:115} INFO - Job 2: Subtask peak_agg.daily_device_app_tx (Background on this error at: http://sqlalche.me/e/gkpj)
[2019-11-21 17:47:57,393] {logging_mixin.py:95} INFO - [[34m2019-11-21 17:47:57,392[0m] {[34mlocal_task_job.py:[0m105} INFO[0m - Task exited with return code 1[0m
经过分析,触发bug的代码块在airflow/api/common/experimental/trigger_dag.py
的 def _trigger_dag
函数中,最后在进行dag触发的时候。
triggers = list()
dags_to_trigger = list()
dags_to_trigger.append(dag)
while dags_to_trigger:
dag = dags_to_trigger.pop()
trigger = dag.create_dagrun(
run_id=run_id,
execution_date=execution_date,
state=State.RUNNING,
conf=run_conf,
external_trigger=True,
)
triggers.append(trigger)
if dag.subdags:
dags_to_trigger.extend(dag.subdags) # 在这里产生了重复触发的BUG
return triggers
原因为,,dag.subdags
中包含了该DAG下所有subDAG,包含subDAG下的subDAG。因此在一个有多层嵌套的DAG中,第二层subDAG一下的subDAG,均会被重复追加到dags_to_trigger
,从而在数据库的dag_run
table中,产生两条相同的记录。但是因为dag_run
table在创建的时候,具有两个UNIQUE KEY
(如下),因此重复记录写入则会触发sql的写入错误。
| dag_run | CREATE TABLE `dag_run` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`dag_id` varchar(250) DEFAULT NULL,
`execution_date` timestamp(6) NULL DEFAULT NULL,
`state` varchar(50) DEFAULT NULL,
`run_id` varchar(250) DEFAULT NULL,
`external_trigger` tinyint(1) DEFAULT NULL,
`conf` blob,
`end_date` timestamp(6) NULL DEFAULT NULL,
`start_date` timestamp(6) NULL DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `dag_id` (`dag_id`,`execution_date`),
UNIQUE KEY `dag_id_2` (`dag_id`,`run_id`),
KEY `dag_id_state` (`dag_id`,`state`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 |
解决方案:
修改源码,记录以触发的dag,每次从dags_to_trigger
中取出dag之后,先判断该dag是否已经被触发,只有未被触发的dag才进行触发。
triggers = list()
dags_to_trigger = list()
dags_to_trigger.append(dag)
is_triggered = dict()
while dags_to_trigger:
dag = dags_to_trigger.pop()
if is_triggered.get(dag.dag_id):
continue
is_triggered[dag.dag_id] = True
trigger = dag.create_dagrun(
run_id=run_id,
execution_date=execution_date,
state=State.RUNNING,
conf=run_conf,
external_trigger=True,
)
triggers.append(trigger)
if dag.subdags:
dags_to_trigger.extend(dag.subdags)
return triggers
多层subDAG嵌套任务的触发测试。
如下是通过修改官方example example_trigger_controller_dag
和 example_trigger_target_dag
,为了方便测试,将两个DAG代码合并在一个文件中。
下面的例子使用了2个DAG,分别是:
my_trigger_target_dag
,修改自example_trigger_target_dag
;在这个DAG中,实现了2层subDAG嵌套。my_trigger_controller_dag
,修改自example_trigger_controller_dag
;在这个DAG中,可以通过for循环控制,连续调用指定次数的my_trigger_target_dag
。在连续需触发其他DAG过程中,要注意的是:
- 需要为每次触发设置不同的
run_id
,如果没有手动设置那么系统会自动设置,但是为了方便查看触发任务和目标DAG的运行,最好手动标志一下run_id
。 - 同一个DAG每次在触发
execute_date
的时候,要设置不同的execute_date
,否则会触发Duplicate entry ‘xxxx’ for key dag_id
的错误,原因和如上分析一样。 execute_date
一定要是UTC格式,否则目标DAG执行时间会和你希望的时间不一致。
- 需要为每次触发设置不同的
import pprint
from datetime import datetime, timedelta
from airflow.utils import timezone
import airflow
from airflow.models import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.operators.python_operator import PythonOperator
from airflow.operators.subdag_operator import SubDagOperator
from airflow.operators.dagrun_operator import TriggerDagRunOperator
pp = pprint.PrettyPrinter(indent=4)
# This example illustrates the use of the TriggerDagRunOperator. There are 2
# entities at work in this scenario:
# 1. The Controller DAG - the DAG that conditionally executes the trigger
# (in example_trigger_controller.py)
# 2. The Target DAG - DAG being triggered
#
# This example illustrates the following features :
# 1. A TriggerDagRunOperator that takes:
# a. A python callable that decides whether or not to trigger the Target DAG
# b. An optional params dict passed to the python callable to help in
# evaluating whether or not to trigger the Target DAG
# c. The id (name) of the Target DAG
# d. The python callable can add contextual info to the DagRun created by
# way of adding a Pickleable payload (e.g. dictionary of primitives). This
# state is then made available to the TargetDag
# 2. A Target DAG : c.f. example_trigger_target_dag.py
args = {
'start_date': airflow.utils.dates.days_ago(2),
'owner': 'airflow',
}
TARGET_DAG = "my_trigger_target_dag"
TRIGGER_CONTROLLER_DAG = "my_trigger_controller_dag"
target_dag = DAG(
dag_id=TARGET_DAG,
default_args=args,
schedule_interval=None,
)
def run_this_func(ds, **kwargs):
print("Remotely received value of {} for key=message".format(kwargs['dag_run'].conf['message']))
def sub_run_this_func(ds, **kwargs):
dag_run_conf = kwargs['dag_run'].conf or {}
print("Sub dag remotely received value of {} for key=message".format(dag_run_conf.get('message')))
def sub2_run_this_func(ds, **kwargs):
dag_run_conf = kwargs['dag_run'].conf or {}
print("Sub2 dag remotely received value of {} for key=message".format(dag_run_conf.get('message')))
def get_sub_dag(main_dag, sub_dag_prefix, schedule_interval, default_args):
parent_dag_name = main_dag.dag_id
sub_dag = DAG(
dag_id="%s.%s" % (parent_dag_name, sub_dag_prefix),
schedule_interval=schedule_interval,
default_args=default_args,
)
task1 = PythonOperator(
task_id="sub_task1",
provide_context=True,
python_callable=sub_run_this_func,
dag=sub_dag,
)
def create_subdag_for_action2(parent_dag, dag_name):
sub2_dag = DAG(
dag_id="%s.%s" % (parent_dag.dag_id, dag_name),
default_args=default_args.copy(),
schedule_interval=schedule_interval,
)
sub2_task1 = PythonOperator(
task_id="sub2_task1",
provide_context=True,
python_callable=sub2_run_this_func,
dag=sub2_dag
)
return sub2_dag
task2 = SubDagOperator(
task_id="sub_dag2",
subdag=create_subdag_for_action2(sub_dag, "sub_dag2"),
dag=sub_dag,
)
task1 >> task2
return sub_dag
run_this = PythonOperator(
task_id='run_this',
provide_context=True,
python_callable=run_this_func,
dag=target_dag,
)
sub_task = SubDagOperator(
task_id="sub_run",
subdag=get_sub_dag(target_dag, "sub_run", None, args),
dag=target_dag,
)
# You can also access the DagRun object in templates
bash_task = BashOperator(
task_id="bash_task",
bash_command='echo "Here is the message: '
'{{ dag_run.conf["message"] if dag_run else "" }}" ',
dag=target_dag,
)
run_this >> sub_task >> bash_task
"""
This example illustrates the use of the TriggerDagRunOperator. There are 2
entities at work in this scenario:
1. The Controller DAG - the DAG that conditionally executes the trigger
2. The Target DAG - DAG being triggered (in example_trigger_target_dag.py)
This example illustrates the following features :
1. A TriggerDagRunOperator that takes:
a. A python callable that decides whether or not to trigger the Target DAG
b. An optional params dict passed to the python callable to help in
evaluating whether or not to trigger the Target DAG
c. The id (name) of the Target DAG
d. The python callable can add contextual info to the DagRun created by
way of adding a Pickleable payload (e.g. dictionary of primitives). This
state is then made available to the TargetDag
2. A Target DAG : c.f. example_trigger_target_dag.py
"""
def conditionally_trigger(context, dag_run_obj):
"""This function decides whether or not to Trigger the remote DAG"""
c_p = context['params']['condition_param']
print("Controller DAG : conditionally_trigger = {}".format(c_p))
if context['params']['condition_param']:
dag_run_obj.payload = {'message': context['params']['message']}
pp.pprint(dag_run_obj.payload)
return dag_run_obj
# Define the DAG
trigger_dag = DAG(
dag_id=TRIGGER_CONTROLLER_DAG,
default_args={
"owner": "airflow",
"start_date": airflow.utils.dates.days_ago(2),
},
schedule_interval=None,
)
# Define the single task in this controller example DAG
execute_date = timezone.utcnow()
for idx in range(1):
trigger = TriggerDagRunOperator(
task_id='test_trigger_dagrun_%d' % idx,
trigger_dag_id=TARGET_DAG,
python_callable=conditionally_trigger,
params={
'condition_param': True,
'message': 'Hello World, exec idx is %d. -- datetime.utcnow: %s; timezone.utcnow:%s' % (
idx, datetime.utcnow(), timezone.utcnow()
)
},
dag=trigger_dag,
execution_date=execute_date,
)
execute_date = execute_date + timedelta(seconds=10)
- 代码准备完毕之后,就可以从UI中看到已经准备好的DAG。
将左侧开关打开,进入触发的DAG,点击触发运行,就可以看到触发测试的结果了。
其中前3次运行时是未启用多层subDAG时的触发测试,测试是通过的。
中间3次是启用多层subDAG嵌套之后进行的触发测试,测试结果未通过。
最后一次是修复代码中触发部分的bug之后,再次触发测试。测试结果通过。
airflow当触发具有多层subDAG的任务的时候,出现[Duplicate entry ‘xxxx’ for key dag_id]的错误的问题处理的更多相关文章
- 4-MySQL DBA笔记-开发进阶
第4章 开发进阶 本章将介绍一些重中之重的数据库开发知识.在数据库表设计中,范式设计是非常重要的基础理论,因此本章把它放在最前面进行讲解,而这其中又会涉及另一个重要的概念——反范式设计.接下来会讲述M ...
- 13、mysql/触发器
1. mysql mysql基础 1)mysql存储结构: 数据库 -> 表 -> 数据 sql语句 2)管理数据库: 增加: create database 数据库 default ...
- MySQL强化
大纲: 数据约束 数据库设计(表设计) 关联查询(多表查询) 存储过程 触发器 mysql权限问题 1 数据约束 1.1 什么是数据约束 对用户操作表的数据进行约束. 1.2 约束种类 1.2.1 默 ...
- mysql简单练习
数据库入门 2.1 引入 数据保存到内存: 优点: 1)读写非常快 缺点: 1)程序关闭导致数据丢失 数据保存到文件: 优点: 1)数据可以永久保存 缺点: 1)频繁地IO操作,效率不高! 2)数据管 ...
- mysql save or update
原文:http://www.bitscn.com/pdb/mysql/201503/473268.html 背景 在平常的开发中,经常碰到这种更新数据的场景:先判断某一数据在库表中是否存在,存在则 ...
- MySQL入门(下)
1. 课程回顾(很清晰明了) mysql基础 1)mysql存储结构: 数据库 -> 表 -> 数据 sql语句 2)管理数据库: 增加: create database 数据库 de ...
- (MariaDB/MySQL)之DML(2):数据更新、删除
本文目录:1.update语句2.delete语句 2.1 单表删除 2.2 多表删除3.truncate table 1.update语句 update用于修改表中记录. # 单表更新语法: UPD ...
- MySQL-02-进阶
大纲 1)数据约束 2)数据库设计(表设计) 3)存储过程 4)触发器 5)mysql权限问题 数据约束 2.1什么数据约束 对用户操作表的数据进行约束 2.2 默认值 作用: 当用户对使用默认值的字 ...
- MySQL--REPLACE INTO与自增
##=====================================================================##测试环境:MySQL版本:MySQL 5.7.19复制 ...
随机推荐
- vue项目性能优化总结
在使用elementUI构建公司管理系统时,发现首屏加载时间长,加载的网络资源比较多,对系统的体验性会差一点,而且用webpack打包的vuejs的vendor包会比较大.所以通过搜集网上所有对于vu ...
- 使用dockerfile构建nginx镜像 转
docker构建镜像的方法: commit.dockerfile 1.使用commit来构建镜像: commit是基于原有镜像基础上构建的镜像,使用此方法构建镜像的目的:保存镜像里的一些配置信 ...
- 红队基础设施建设:隐藏你的C2
0x01 前言 待定
- SQL 多表查询展示
########################多表########################SELECT COUNT(*) FROM MEMBER1 A; 查询出来的结果为43行数据: SEL ...
- sql DATEDIFF 函数
sql DATEDIFF 函数 今天的所有数据: 昨天的所有数据: 7天内的所有数据: 30天内的所有数据: 半个月的所有数据: 本月的所有数据: 上月的所有数据: 本年的所有数据: --查询今天是 ...
- SYSLINUX官方文档
帮助正确认识SYSLINUX http://www.syslinux.org/wiki/index.php/Doc/syslinux http://www.syslinux.org/wiki/inde ...
- html页面嵌入php代码不显示内容
新建一个html文件,内容如下: <html> <head> <title>Example</title> </head> <body ...
- windows下用navicat链接虚拟机MySQL数据库的过程和问题解决
navicat远程连接虚拟机中的MySQL数据库 1.在linux查看mysql服务器IP地址 ifconfig 记住此IP navicat设置 设置完毕 遇到问题 一直连不上,在网上搜索了一下,主要 ...
- zencart新增分类点击不进去的解决办法
zencart批量表新增分类点击不进去的原因是安装了管理员权限分级模块,只要运行以下语句即可. INSERT INTO `admin_allowed_categories` (`categories_ ...
- zencart分类页每页显示产品数量自定义选择的方法
zencart默认分类页每页显示产品数量是固定的,如何让顾客可以选择每页显示的产品的数量呢?效果图 方式一:全部展示 方式二:下拉菜单 修改方法 1.导入sql INSERT INTO configu ...