前置知识

代数基本定理

定理:每个次数 ≥ 1 复系数多项式在复数域中至少有一个跟。

由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。(只要不断把多项式除以(x-xa),即可从有一个根推出有n个根)

实系数多项式因式分解定理

定理:每个次数 ≥ 1 实系数多项式在实数域上都可以唯一的分解成一次因式和二次不可约多项式的乘积。

证:

对 f(x) 的次数用数学归纳法。

n=1时,一次多项式显然不可约,定理成立;

假设对次数 ≤ n 时定理成立,

设 f(x) 是 n 次多项式,由代数基本定理,f(x) 有一复根 α.

如果 α 是实数,那么 $f(x) = (x - \alpha )f_1(x)$,其中 $f_1(x)$ 为 n-1 次实系数多项式;

如果 α 不是实数,那么 $\bar \alpha$ 也是 f(x) 的根,于是

$f(x) = (x - \alpha )(x - \bar \alpha ) f_2(x) \\= [x^2 - (\alpha  + \bar \alpha) x + a \bar \alpha]f_2(x)$,其中 $x^2 - (\alpha  + \bar \alpha) x + a \bar \alpha$ 是实系数二次不可约多项式,从而 $f_2(x)$ 是 n-2 次实系数多项式。

题目

给出一个多项式,判断在实数范围内是否可分解。

分析:

由上面定理可知,在实数范围内任一不可约多项式只能是一次或二次的。

除此之外,显然有奇数次实系数多项式至少有一个实根。

(测试中含有常数

#include<bits/stdc++.h>
using namespace std; int n, a[]; int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = n; i >= ;i--) scanf("%d", &a[i]);
if(n <= || (n == && a[] * a[] - * a[] * a[] < )) printf("Yes\n");
else printf("No\n");
}
return ;
}

2019牛客暑期多校训练营(第七场)D Number——实系数多项式因式分解定理的更多相关文章

  1. 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)

    题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9:  对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可.     后者mod=1e9,5才 ...

  2. 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...

  3. 2019牛客暑期多校训练营(第一场) B Integration (数学)

    链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...

  4. 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...

  5. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  6. 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...

  7. [状态压缩,折半搜索] 2019牛客暑期多校训练营(第九场)Knapsack Cryptosystem

    链接:https://ac.nowcoder.com/acm/contest/889/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

  8. 2019牛客暑期多校训练营(第二场)J-Subarray(思维)

    >传送门< 前言 这题我前前后后看了三遍,每次都是把网上相关的博客和通过代码认真看了再思考,然并卵,最后终于第三遍也就是现在终于看懂了,其实懂了之后发现其实没有那么难,但是的的确确需要思维 ...

  9. 2019牛客暑期多校训练营(第一场)-A (单调栈)

    题目链接:https://ac.nowcoder.com/acm/contest/881/A 题意:给定两个长度均为n的数组a和b,求最大的p使得(a1,ap)和(b1,bp)等价,等价的定义为其任意 ...

  10. 2019牛客暑期多校训练营(第一场)A - Equivalent Prefixes(单调栈)

    题意 给定两个$n$个元素的数组$a,b$,它们的前$p$个元素构成的数组是"等价"的,求$p$的最大值."等价"的意思是在其任意一个子区间内的最小值相同. $ ...

随机推荐

  1. Ctrl+Tab

    很好用的快捷键. 可以在浏览器中自由切换,也可以在编辑器中自由切换.

  2. Nachos java版学习(二)

    threads.Lock类 提 供 了 锁 以 保 证 互 斥. 在 临 界 代 码 区 的 两 端 执 行 Lock.acquire()和Lock.release()即可保证同时只有一个线程访问临界 ...

  3. Python基础系列讲解——时间模块详解大全之time模块

    Python中提供处理时间日期相关的内置模块有time.datetime和calendar. time模块中大多数函数调用了所在平台C library 的同名函数,因此更依赖于操作系统层面,所以tim ...

  4. Postman和jmeter的区别

    1.创建接口用例集(没区别) Postman是Collections,Jmeter是线程组,没什么区别. 2.步骤的实现(有区别) Postman和jmeter都是创建http请求 区别1:postm ...

  5. (十三)自定义JSTL标签

    前面的博客,我们讲过了 自定义 el函数 : 讲一个 自定义标签技术 : 目录 自定义标签 快速入门:使用标签输出客户机IP 关于标签处理器类的方法 自定义标签功能扩展 传统标签 简单标签 配置简单标 ...

  6. python学习-19 字典

    字典dict 1.dic = {key:value,key:value} 字典有{ }括住,字典的value可以是任意值,字典的key的值不包括列表和字典 di = {"age": ...

  7. 十大经典算法 Python实现

    十大经典排序算法(python实现)(原创) 使用场景: 1,空间复杂度 越低越好.n值较大: 堆排序 O(nlog2n) O(1) 2,无空间复杂度要求.n值较大: 桶排序 O(n+k) O(n+k ...

  8. 项目element-ui checkbox里面获取选中项 实现批量删除 修改

    <el-table :data="tableData" stripe border style="width: 100%" @selection-chan ...

  9. MyBatis_02 框架

    今日内容 动态SQL语句 Xml方式 注解方式 MyBatis的缓存 MyBatis的关联查询 MyBatis逆向工程 动态SQL语句 动态SQL是什么 就是相对与固定SQL.就是通过传入的参数不一样 ...

  10. 烧脑!CMU、北大等合著论文真的找到了神经网络的全局最优解

    烧脑!CMU.北大等合著论文真的找到了神经网络的全局最优解 机器之心 ​ 已认证的官方帐号 811 人赞同了该文章 选自arXiv,作者:Simon S. Du.Jason D. Lee.Haochu ...