前置知识

代数基本定理

定理:每个次数 ≥ 1 复系数多项式在复数域中至少有一个跟。

由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。(只要不断把多项式除以(x-xa),即可从有一个根推出有n个根)

实系数多项式因式分解定理

定理:每个次数 ≥ 1 实系数多项式在实数域上都可以唯一的分解成一次因式和二次不可约多项式的乘积。

证:

对 f(x) 的次数用数学归纳法。

n=1时,一次多项式显然不可约,定理成立;

假设对次数 ≤ n 时定理成立,

设 f(x) 是 n 次多项式,由代数基本定理,f(x) 有一复根 α.

如果 α 是实数,那么 $f(x) = (x - \alpha )f_1(x)$,其中 $f_1(x)$ 为 n-1 次实系数多项式;

如果 α 不是实数,那么 $\bar \alpha$ 也是 f(x) 的根,于是

$f(x) = (x - \alpha )(x - \bar \alpha ) f_2(x) \\= [x^2 - (\alpha  + \bar \alpha) x + a \bar \alpha]f_2(x)$,其中 $x^2 - (\alpha  + \bar \alpha) x + a \bar \alpha$ 是实系数二次不可约多项式,从而 $f_2(x)$ 是 n-2 次实系数多项式。

题目

给出一个多项式,判断在实数范围内是否可分解。

分析:

由上面定理可知,在实数范围内任一不可约多项式只能是一次或二次的。

除此之外,显然有奇数次实系数多项式至少有一个实根。

(测试中含有常数

#include<bits/stdc++.h>
using namespace std; int n, a[]; int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = n; i >= ;i--) scanf("%d", &a[i]);
if(n <= || (n == && a[] * a[] - * a[] * a[] < )) printf("Yes\n");
else printf("No\n");
}
return ;
}

2019牛客暑期多校训练营(第七场)D Number——实系数多项式因式分解定理的更多相关文章

  1. 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)

    题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9:  对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可.     后者mod=1e9,5才 ...

  2. 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...

  3. 2019牛客暑期多校训练营(第一场) B Integration (数学)

    链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...

  4. 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...

  5. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  6. 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...

  7. [状态压缩,折半搜索] 2019牛客暑期多校训练营(第九场)Knapsack Cryptosystem

    链接:https://ac.nowcoder.com/acm/contest/889/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

  8. 2019牛客暑期多校训练营(第二场)J-Subarray(思维)

    >传送门< 前言 这题我前前后后看了三遍,每次都是把网上相关的博客和通过代码认真看了再思考,然并卵,最后终于第三遍也就是现在终于看懂了,其实懂了之后发现其实没有那么难,但是的的确确需要思维 ...

  9. 2019牛客暑期多校训练营(第一场)-A (单调栈)

    题目链接:https://ac.nowcoder.com/acm/contest/881/A 题意:给定两个长度均为n的数组a和b,求最大的p使得(a1,ap)和(b1,bp)等价,等价的定义为其任意 ...

  10. 2019牛客暑期多校训练营(第一场)A - Equivalent Prefixes(单调栈)

    题意 给定两个$n$个元素的数组$a,b$,它们的前$p$个元素构成的数组是"等价"的,求$p$的最大值."等价"的意思是在其任意一个子区间内的最小值相同. $ ...

随机推荐

  1. tp3.2判断修改成功

    save方法的返回值是影响的记录数,如果返回false则表示更新出错,因此一定要用恒等来判断是否更新失败. 一开始用这种判断, if (!$edit_flag && $edit_fla ...

  2. vs2019将小游戏打包成msi踩的坑(个人)

    1.VS无Setup projecrt? vs2015之前是自带打包msi功能的,vs2017之后需要自己去下载插件: 下载地址:https://marketplace.visualstudio.co ...

  3. vscode配置phpxdebug

    打debug还是很有必要的,以前嫌麻烦,现在觉得,通过debug可以看自己写的代码的执行的逻辑,更容易理清别人代码的逻辑. 步骤: 下载phpdebug插件 查看自己的php版本信息,下载对应的deb ...

  4. Django Simple Captcha的使用

    Django Simple Captcha的使用 1.下载Django Simple Captcha django-simple-captcha官方文档地址 http://django-simple- ...

  5. golang设置运行的核数

    package main import ( "fmt" "runtime" ) //设置golang运行的核数 //1.8 版本以上的会自动设置 func ma ...

  6. 『Python Web框架之Django』第几节: AJAX

    一. AJAX简介 AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步的Javascript和XML”.即使用Javascript语言与服务器进行异步交互, ...

  7. 点标记(lambda表达式+linq查询标记符)与linq语句(查询表达式)

    什么是Linq表达式?什么是Lambda表达式? 参照:https://www.cnblogs.com/zhaopei/p/5746414.html

  8. babel-plugin-transform-remove-strict-mode

    场景:在VUE项目中,需要用到横向滚动条,在引入MUI相关的组件后,模板中的代码如下 在控制台中报错 报错内容说的是在严格模式下(strict mode)类型错误 经过推测,觉得可能是mui.js中用 ...

  9. HttpResponse与JasonResponse

    两者的含义 我们都知道后台给前台返回的数据都是字符串类型,那么怎么返回成为一个问题 HttpResponse与JasonResponse都是django中后台给前台返回数据的方法, 并且他们最后走的都 ...

  10. Java 之 HashMap 集合

    一.HashMap 概述 java.util.HashMap<k,v> 集合 implements Map<k,v> 接口 HashMap 集合的特点: 1.HashMap 集 ...