题面

解析

\(n\)只有\(30\)可以直接枚举每个矩形,

判断他们的左上角到右下角或右上角到左上角的最短路是否小于\(T\).

最短路可以用\(dijkstra\).

一开始想用\(DP\)写最短路后来才知道思路有问题(因为最短路的方案可能不在矩形中).

code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#define fre(x) freopen(x".in","r",stdin),freopen(x".out","w",stdout)
using namespace std; inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return f*sum;
} const int N=35;
struct edge{int to,next,w;}e[N*N*4];
int n,m,T,a[N][N];
int f[N*N][N*N],id[N][N],tot=0;
int ans=0,v[N*N];
int head[N*N],cnt=0;
int dx[4]={0,0,1,-1},dy[4]={1,-1,0,0};
priority_queue < pair<int,int> > que; inline void add(int x,int y,int w){
e[++cnt]=(edge){head[x],y,w};head[x]=cnt;
} inline void dji(int s){
memset(v,0,sizeof(v));
que.push(make_pair(f[s][s],s));
while(!que.empty()){
int x=que.top().second;que.pop();
if(v[x]) continue;v[x]=1;
for(int i=head[x];i;i=e[i].to){
int k=e[i].next;
if(f[s][k]>f[s][x]+e[i].w){
f[s][k]=f[s][x]+e[i].w;
que.push(make_pair(-f[s][k],k));
}
}
}
} int main(){
n=read();m=read();T=read();
for(int i=1;i<=n;i++){
char c[N];cin>>c;
for(int j=0;j<m;j++) a[i][j+1]=c[j]-'0';
}
memset(f,0x3f,sizeof(f));
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) id[i][j]=++tot;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int k=0;k<4;k++){
int x=i+dx[k],y=j+dy[k];
if(!x||x>n||!y||y>m) continue;
add(id[i][j],id[x][y],a[x][y]);
}
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) f[id[i][j]][id[i][j]]=a[i][j],dji(id[i][j]);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
for(int k=i;k<=n;k++){
for(int l=j;l<=m;l++){
if(f[id[i][j]][id[k][l]]<=T||f[id[i][l]][id[k][j]]<=T) ans=max(ans,(k-i)*(k-i)+(l-j)*(l-j));
}
}
}
}
double t=sqrt(ans);printf("%.6f\n",t);
return 0;
}

题解 [BZOJ1295][SCOI2009] 最长距离的更多相关文章

  1. [BZOJ1295][SCOI2009]最长距离 最短路+枚举

    1295: [SCOI2009]最长距离 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1683  Solved: 912[Submit][Statu ...

  2. BZOJ1295 [SCOI2009]最长距离 最短路 SPFA

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1295 题意概括 有一块矩形土地,被分为 N*M 块 1*1 的小格子. 有的格子含有障碍物. 如果 ...

  3. bzoj1295: [SCOI2009]最长距离

    bfs最短路. 写的真丑... #include<cstdio> #include<algorithm> #include<cstring> #include< ...

  4. 【spfa】bzoj1295 [SCOI2009]最长距离

    题意:给你一个n*m的点阵.有些点是障碍,求一个欧几里得距离最大的点对(A,B),使得在移走的障碍≤T的情况下,可以从A走到B. 建图,跑n*m次spfa,求出从 每个点 出发到 其他所有点 的 经过 ...

  5. 【BZOJ1295】[SCOI2009]最长距离(最短路)

    [BZOJ1295][SCOI2009]最长距离(最短路) 题面 BZOJ 洛谷 题解 这题很妙啊. 我们枚举一个点,只需要考虑到他的最远点就行了,显然只需要考虑一个点即可.那么这两个点之前联通的最小 ...

  6. BZOJ 1295: [SCOI2009]最长距离 spfa

    1295: [SCOI2009]最长距离 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1295 Description windy有一块 ...

  7. 1295: [SCOI2009]最长距离

    1295: [SCOI2009]最长距离 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 960  Solved: 498[Submit][Status ...

  8. bzoj 1295: [SCOI2009]最长距离

    题目链接 1295: [SCOI2009]最长距离 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1165  Solved: 619[Submit][ ...

  9. BZOJ 1295: [SCOI2009]最长距离( 最短路 )

    把障碍点看做点(边)权为1, 其他为0. 对于每个点跑spfa, 然后和它距离在T以内的就可以更新答案 ------------------------------------------------ ...

随机推荐

  1. IDEA插件之JavaDoc

      作用:用于在Java类元素(例如字段,方法等)上生成Java文档的插件.   1.安装JavaDoc插件 File -> Settings -> Plugins -> Marke ...

  2. Ubuntu 下开发ARM

    1. 准备工作 linux下自带虚拟串口的驱动,不需要手动安装.CP2102之类的USB转串口,是ttyUSBx. 所有的设备都在/dev目录下,简单扫描串口的办法: ls /dev > bef ...

  3. c++:论如何成功把自己搞懵【二叉树特辑①】(不定期更新)

    并不正经的前言 以前我这个小白看OI的书,老觉得有些东西很高端(看不懂的自然就很高端[滑稽]):什么栈啊,位运算啊,二叉树啊.有些东西我学了之后也很迷糊(真的不是因为傻?),做题的时候总是可以把自己搞 ...

  4. xtrabackup原理,整库,单表,部分备份恢复

    物理备份xtrabackup原理 Percona XtraBackup(简称PXB)是 Percona 公司开发的一个用于 MySQL 数据库物理热备的备份工具,支持 MySQl(Oracle).Pe ...

  5. 第八章 ZYNQ-MIZ701 软硬调试高级技巧

      软件和硬件的完美结合才是SOC的优势和长处,那么开发ZYNQ就需要掌握软件和硬件开发的调试技巧,这样才能同时分析软件或者硬件的运行情况,找到问题,最终解决.那么本章将通过一个简单的例子带大家使用v ...

  6. prometheus-常用资源对象

    监控 Kubernetes 常用资源对象 Prometheus 来自动发现 Kubernetes 集群的节点,用到了 Prometheus 针对 Kubernetes 的服务发现机制kubernete ...

  7. 空间变换网络(STN)原理+2D图像空间变换+齐次坐标系讲解

    空间变换网络(STN)原理+2D图像空间变换+齐次坐标系讲解 2018年11月14日 17:05:41 Rosemary_tu 阅读数 1295更多 分类专栏: 计算机视觉   版权声明:本文为博主原 ...

  8. C#数字前补0

    [TestMethod] public void Test8() { ; string b = string.Format("{0:000000}", a); , '); }

  9. ASP.NET Core中间件实现分布式 Session(转载)

    ASP.NET Core中间件实现分布式 Session 1. ASP.NET Core中间件详解 1.1. 中间件原理 1.1.1. 什么是中间件 1.1.2. 中间件执行过程 1.1.3. 中间件 ...

  10. 在Android8.0以上收不到广播问题(AppWidget)

    对Intent指定组件 //安卓8.0必须添加 intent.setComponent(new ComponentName(context,MyAppWidgetProvider.class)); 问 ...