题意:给你n个数字,每个数字可以加减任何数字,付出变化差值的代价,求最后整个序列是严格单调递增的最小的代价。

  首先我们要将这个题目进行转化,因为严格单调下是无法用下面这个dp的方法的,因此我们转化成非严格的,对严格下而言,a[j]-a[i]>=j-i,那么得到a[i]-i<=a[j]-j。这样,我们令a'[i] = a[i] - i,就可以得到a'[i]<=a'[j]。这样我们就把问题转化成求这样一个非严格单调的序列了。

  将整个序列排序后构成一个新的数组b[i],用dp[i][j]来表示到第 i 个数字的时候,这个数字正好是b[j]或者比b[j]更小的最小代价。那么我们可以得到转移方程如下:dp[i][j]可以从dp[i][j-1]转化而来,因为b数组是单调的,所以既然 i 这个位置更小了,后面的肯定也满足单调,那么就可以直接转化了,或者说dp[i][j]可以从dp[i][k](1<=k<=j-1)中的最小值转化而来,另外dp[i][j]可以由dp[i-1][j]+abs(a[i]-b[j])转化过来,也就是说,前i-1个已经满足,那么第 i 个变成b[j]即可,当然这付出的代价是abs(a[i]-b[j])。这样我们就把dp过程写好了,复杂度是O(n^2),我们还可以把b数组进行去重处理以优化。另外我们还可以用滚动数组来优化空间复杂度。

  具体见代码:

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = + ; ll dp[][N];
ll a[N];
vector<ll> V; int main()
{
memset(dp,,sizeof(dp));
int n;
cin >> n;
for(int i=;i<=n;i++)
{
scanf("%I64d",a+i);
a[i] -= i;
V.push_back(a[i]);
}
sort(V.begin(),V.end());
V.erase(unique(V.begin(),V.end()),V.end());
int now = , pre = ;
for(int i=;i<=n;i++)
{
now ^= , pre ^= ;
dp[now][] = dp[pre][] + abs(a[i]-V[]);
for(int j=;j<V.size();j++)
{
dp[now][j] = min(dp[now][j-],dp[pre][j]+abs(a[i]-V[j]));
}
}
cout << dp[now][V.size()-] << endl;
return ;
}

  另外poj3666也是类似的,那个题目的意思是,把序列变成非严格递增或递减,需要的最小代价。那么我们连转化都不需要了,只要再来一遍递减的就可以了(话说很多人的博客说这题的数据水,只要处理完递增的就可以了)。

  再看类似的一题,hdu5256。现在不是求最小代价了,而是求最少需要变化几个元素使得满足严格递增。套路还是一样的,我们先装化成非严格的套路来。之后我们求出其最长不下降序列(就是把LIS的过程中换成upper_bound即可)的个数t,答案就是len-t。仔细琢磨一下的话还是觉得非常奥义的!

CodeForces 714E Sonya and Problem Wihtout a Legend(单调数列和DP的小研究)的更多相关文章

  1. Codeforces 713C Sonya and Problem Wihtout a Legend DP

    C. Sonya and Problem Wihtout a Legend time limit per test 5 seconds memory limit per test 256 megaby ...

  2. Codeforces 713C Sonya and Problem Wihtout a Legend(DP)

    题目链接   Sonya and Problem Wihtout a Legend 题意  给定一个长度为n的序列,你可以对每个元素进行$+1$或$-1$的操作,每次操作代价为$1$. 求把原序列变成 ...

  3. codeforces C. Sonya and Problem Wihtout a Legend(dp or 思维)

    题目链接:http://codeforces.com/contest/713/problem/C 题解:这题也算是挺经典的题目了,这里附上3种解法优化程度层层递进,还有这里a[i]-i<=a[i ...

  4. Codeforces 713C Sonya and Problem Wihtout a Legend(单调DP)

    [题目链接] http://codeforces.com/problemset/problem/713/C [题目大意] 给出一个数列,请你经过调整使得其成为严格单调递增的数列,调整就是给某些位置加上 ...

  5. Codeforces C. Sonya and Problem Wihtout a Legend(DP)

    Description Sonya was unable to think of a story for this problem, so here comes the formal descript ...

  6. Codeforces 713C Sonya and Problem Wihtout a Legend

    题意:给一个序列,可以进行若干次操作,每次操作选择一个数让它+1或-1,问最少要几次操作使得序列变为严格单调递增序列. 题解:首先考虑非严格递增序列,则每个数字最终变成的数字一定是该数组中的某个数.那 ...

  7. 【CF713C】Sonya and Problem Wihtout a Legend(离散化,DP)

    题意:给你一个数列,对于每个数字你都可以++或者−− 然后花费就是你修改后和原数字的差值,然后问你修改成一个严格递增的,最小花费 思路:很久以前做过一道一模一样的 严格递增很难处理,就转化为非严格递增 ...

  8. Codeforces Round #371 (Div. 1) C. Sonya and Problem Wihtout a Legend 贪心

    C. Sonya and Problem Wihtout a Legend 题目连接: http://codeforces.com/contest/713/problem/C Description ...

  9. Codeforces Round #371 (Div. 2)E. Sonya and Problem Wihtout a Legend[DP 离散化 LIS相关]

    E. Sonya and Problem Wihtout a Legend time limit per test 5 seconds memory limit per test 256 megaby ...

随机推荐

  1. Spring中常用的设计模式之:代理模式

    看了tom老师讲的深入分析spring源码,讲的挺好,做个小总结 代理模式的定义: 为其他对象提供一种代理以控制对这个对象的访问.在某些情况下,一个对象不适合或者不能直接引用另一个对象,而代理对象可以 ...

  2. 可以用for循环直接删除ArrayList的特定元素吗?可能会出现什么问题?怎样解决?

    for循环直接删除ArrayList中的特定元素是错的,不同的for循环会发生不同的错误,泛型for会抛出 ConcurrentModificationException,普通的for想要删除集合中重 ...

  3. mybatis如何接收字符串转换为date类型插入数据库

    今天遇到一个问题,先描述一下: 后台获取数据,有一个字段是时间字段,后台传过来的是字符串类型的,如:2016/11/16 10:26:17, 将该字符串放在map对象中(持久层用的是mybatis或者 ...

  4. 公众平台第三方平台 .NET开发

    前言:本博客借鉴了很多三方内容整理的,参考博客:竹叶苿. 一.开发的目的(以下是引用官方的话) 公众平台第三方平台 是为了让公众号或小程序运营者,在面向垂直行业需求时,可以一键授权给第三方平台(并且可 ...

  5. Solr集群的搭建概述(非教程)

    1.什么是SolrCloud SolrCloud(solr 云)是Solr提供的分布式搜索方案,当你需要大规模,容错,分布式索引和检索能力时使用 SolrCloud.当一个系统的索引数据量少的时候是不 ...

  6. python3中SYS模块

    sys.argv               命令行参数List,第一个元素是程序本身路径sys.modules        返回系统导入的模块字段,key是模块名,value是模块sys.exit ...

  7. jvm监控工具jconsole进行远程监控配置

    [环境] SUSE linux11 + jdk1.6 + tomcat7 [场景] 最近在做性能测试,想通过我本地(win7)上的jdk来远程监控上述服务器的jvm相关信息. [配置] 配置上述服务器 ...

  8. gyp ERR! stack Error: EACCES: permission denied, mkdir问题解决方案

    sudo npm i --unsafe-perm 原因还是权限问题 就是说 npm 出于安全考虑不支持以 root 用户运行,即使你用 root 用户身份运行了,npm 会自动转成一个叫 nobody ...

  9. systemd自启动tomcat

    tomcat自启动service [Unit] Description=Tomcat After=network.target [Service] Type=forking PIDFile=/usr/ ...

  10. Centos7添加密码安全策略

    设置密码中至少包含一个小写字符,执行命令:# authconfig --enablereqlower --update查看设置:# grep "^lcredit" /etc/sec ...