一、论文

综述类的文章

[1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the state of the art [J].IEEE Transactions on PatternAnalysis andMachine Intelligence, 2012, 34(4): 743-761.

[2]M. Enzweiler, and D.Gavrila. Monocular pedestrian detection: survey and experiments [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2009, 31(12): 2179-2195.

[3]D. Geronimo, A. M.Lopez and A. D. Sappa, et al. Survey of pedestrian detection for advanced driverassistance systems [J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2010, 32(7): 1239-1258.

[4]苏松志, 李绍滋, 陈淑媛等. 行人检测技术综述[J]. 电子学报, 2012, 40(4): 814-820.

[5]贾慧星, 章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J], 自动化学报, 2007, 33(1): 84-90.

[6] 许言午, 曹先彬,乔红. 行人检测系统研究新进展及关键技术展望[J], 电子学报, 2008, 36(5): 368-376.

[7] 杜友田; 陈峰;徐文立; 李永彬;基于视觉的人的运动识别综述, 电子学报, 2007. 35(1): 84-90.

[8]朱文佳. 基于机器学习的行人检测关键技术研究[D]. 第一章硕士学位论文, 上海交通大学. 2008. 指导教师: 戚飞虎.

二、Source Code

1.INRIA Object detection and Localization Toolkit, Dalal于2005年提出了基于HOG特征的行人检测方法,行人检测领域中的经典文章之一。HOG特征目前也被用在其他的目标检测与识别、图像检索和跟踪等领域中。

2. Real-time Pedestrian Detection. Jianxin Wu实现的快速行人检测方法。

3. Hough Transfom for Pedestrian Detection. Olga Barinova, CVPR 2010 Paper: On detection of multiple object instances using Hough Transforms

4. HIKSVM, HOG+LBP+HIKSVM, 行人检测的经典方法.

5. GroundHOG, GPU-based Object Detection with Geometric Constraints, In: ICVS, 2011.  CUDA版本的HOG+SVM, video.

6.  100FPS_PDS, Pedestrian detection at 100 frames per second, R. Benenson.  CVPR, 2012. 实时的(⊙o⊙)哦。 Real-time!!!

7. POM: Probabilistic Occupancy Map.  Multiple camera pedestrian detection.

三、DataSets

MIT数据库

该数据库为较早公开的行人数据库,共924张行人图片(ppm格式,宽高为64x128),肩到脚的距离约80象素。该数据库只含正面和背面两个视角,无负样本,未区分训练集和测试集。Dalal等采用“HOG+SVM”,在该数据库上的检测准确率接近100%。

INRIA数据库

该数据库是目前使用最多的静态行人检测数据库,提供原始图片及相应的标注文件。训练集有正样本614张(包含2416个行人),负样本1218张;测试集有正样本288张(包含1126个行人),负样本453张。图片中人体大部分为站立姿势且高度大于100个象素,部分标注可能不正确。图片主要来源于GRAZ-01、个人照片及google,因此图片的清晰度较高。在XP操作系统下部分训练或者测试图片无法看清楚,但可用OpenCV正常读取和显示。

Daimler行人数据库

该数据库采用车载摄像机获取,分为检测和分类两个数据集。检测数据集的训练样本集有正样本大小为18x36和48x96的图片各15560(3915x4)张,行人的最小高度为72个象素;负样本6744张(大小为640x480或360x288)。测试集为一段27分钟左右的视频(分辨率为640x480),共21790张图片,包含56492个行人。分类数据库有三个训练集和两个测试集,每个数据集有4800张行人图片,5000张非行人图片,大小均为18x36,另外还有3个辅助的非行人图片集,各1200张图片。

Caltech行人数据库

该数据库是目前规模较大的行人数据库,采用车载摄像头拍摄,约10个小时左右,视频的分辨率为640x480,30帧/秒。标注了约250,000帧(约137分钟),350000个矩形框,2300个行人,另外还对矩形框之间的时间对应关系及其遮挡的情况进行标注。数据集分为set00~set10,其中set00~set05为训练集,set06~set10为测试集(标注信息尚未公开)。性能评估方法有以下三种:(1)用外部数据进行训练,在set06~set10进行测试;(2)6-fold交叉验证,选择其中的5个做训练,另外一个做测试,调整参数,最后给出训练集上的性能;(3)用set00~set05训练,set06~set10做测试。由于测试集的标注信息没有公开,需要提交给Pitor Dollar。结果提交方法为每30帧做一个测试,将结果保存在txt文档中(文件的命名方式为I00029.txt I00059.txt ……),每个txt文件中的每行表示检测到一个行人,格式为“[left, top,width, height, score]”。如果没有检测到任何行人,则txt文档为空。该数据库还提供了相应的Matlab工具包,包括视频标注信息的读取、画ROC(Receiver Operatingcharacteristic Curve)曲线图和非极大值抑制等工具。

TUD行人数据库

TUD行人数据库为评估运动信息在行人检测中的作用,提供图像对以便计算光流信息。训练集的正样本为1092对图像(图片大小为720x576,包含1776个行人);负样本为192对非行人图像(手持摄像机85对,车载摄像机107对);另外还提供26对车载摄像机拍摄的图像(包含183个行人)作为附加训练集。测试集有508对图像(图像对的时间间隔为1秒,分辨率为640x480),共有1326个行人。Andriluka等也构建了一个数据库用于验证他们提出的检测与跟踪相结合的行人检测技术。该数据集的训练集提供了行人的矩形框信息、分割掩膜及其各部位(脚、小腿、大腿、躯干和头部)的大小和位置信息。测试集为250张图片(包含311个完全可见的行人)用于测试检测器的性能,2个视频序列(TUD-Campus和TUD-Crossing)用于评估跟踪器的性能。

NICTA行人数据库

该数据库是目前规模较大的静态图像行人数据库,25551张含单人的图片,5207张高分辨率非行人图片,数据库中已分好训练集和测试集,方便不同分类器的比较。Overett等用“RealBoost+Haar”评估训练样本的平移、旋转和宽高比等各种因素对分类性能的影响:(1)行人高度至少要大于40个象素;(2)在低分辨率下,对于Haar特征来说,增加样本宽度的性能好于增加样本高度的性能;(3)训练图片的大小要大于行人的实际大小,即背景信息有助于提高性能;(4)对训练样本进行平移提高检测性能,旋转对性能的提高影响不大。以上的结论对于构建行人数据库具有很好的指导意义。

ETH行人数据库

Ess等构建了基于双目视觉的行人数据库用于多人的行人检测与跟踪研究。该数据库采用一对车载的AVT Marlins F033C摄像头进行拍摄,分辨率为640x480,帧率13-14fps,给出标定信息和行人标注信息,深度信息采用置信度传播方法获取。

CVC行人数据库

该数据库目前包含三个数据集(CVC-01、CVC-02和CVC-Virtual),主要用于车辆辅助驾驶中的行人检测研究。CVC-01[Geronimo,2007]有1000个行人样本,6175个非行人样本(来自于图片中公路区域中的非行人图片,不像有的行人数据库非行人样本为天空、沙滩和树木等自然图像)。CVC-02包含三个子数据集(CVC-02-CG、CVC-02-Classification和CVC-02-System),分别针对行人检测的三个不同任务:感兴趣区域的产生、分类和系统性能评估。图像的采集采用Bumblebee2立体彩色视觉系统,分辨率640x480,焦距6mm,对距离摄像头0~50m的行人进行标注,最小的行人图片为12x24。CVC-02-CG主要针对候选区域的产生,有100张彩色图像,包含深度和3D点信息;CVC-02-Classification主要针对行人分类,训练集有1016张正样本,7650张负样本,测试集分为基于切割窗口的分类(570张行人,7500张非行人)和整张图片的检测(250张包含行人的图片,共587个行人);CVC-02-System主要用于系统的性能评估,包含15个视频序列(4364帧),7983个行人。CVC-Virtual是通过Half-Life 2图像引擎产生的虚拟行人数据集,共包含1678虚拟行人,2048个非行人图片用于测试。

USC行人数据库

该数据库包含三组数据集(USC-A、USC-B和USC-C),以XML格式提供标注信息。USC-A[Wu, 2005]的图片来自于网络,共205张图片,313个站立的行人,行人间不存在相互遮挡,拍摄角度为正面或者背面;USC-B的图片主要来自于CAVIAR视频库,包括各种视角的行人,行人之间有的相互遮挡,共54张图片,271个行人;USC-C有100张图片来自网络的图片,232个行人(多角度),行人之间无相互遮挡。

四、其他

相关资料资料

1. Edgar Seemann维护的行人检测网站,比较全,包括publications, code, datasets等。

2. Pedestrian detection: state of the art. A video talk byPitor Dollar. Pitor Dollar做了很多关于行人检测方法的研究,他们研究小组的Caltech Pedestrian Dataset也很出名。

【计算机视觉】行人检测(Pedestrian Detection)资源的更多相关文章

  1. 行人检测(Pedestrian Detection)资源

    一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the stat ...

  2. 行人检测(Pedestrian Detection)资源整合

    一.纸 评论文章分类: [1] D. Geronimo, and A. M.Lopez. Vision-based Pedestrian Protection Systems for Intellig ...

  3. 目标检测之行人检测(Pedestrian Detection)---行人检测之简介0

    一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the stat ...

  4. 【论文解读】行人检测:What Can Help Pedestrian Detection?(CVPR'17)

    前言 本篇文章出自CVPR2017,四名作者为Tsinghua University,Peking University, 外加两名来自Megvii(旷视科技)的大佬. 文章中对能够帮助行人检测的ex ...

  5. 目标检测之行人检测(Pedestrian Detection)基于hog(梯度方向直方图)--- 梯度直方图特征行人检测、人流检测2

    本文主要介绍下opencv中怎样使用hog算法,因为在opencv中已经集成了hog这个类.其实使用起来是很简单的,从后面的代码就可以看出来.本文参考的资料为opencv自带的sample. 关于op ...

  6. paper 86:行人检测资源(上)综述文献【转载,以后使用】

    行人检测具有极其广泛的应用:智能辅助驾驶,智能监控,行人分析以及智能机器人等领域.从2005年以来行人检测进入了一个快速的发展阶段,但是也存在很多问题还有待解决,主要还是在性能和速度方面还不能达到一个 ...

  7. paper 87:行人检测资源(下)代码数据【转载,以后使用】

    这是行人检测相关资源的第二部分:源码和数据集.考虑到实际应用的实时性要求,源码主要是C/C++的.源码和数据集的网址,经过测试都可访问,并注明了这些网址最后更新的日期,供学习和研究进行参考.(欢迎补充 ...

  8. 【计算机视觉】论文笔记:Ten years of pedestrian detection, what have we learned?

    最近正在研究行人检测,学习了一篇2014年发表在ECCV上的一篇综述性的文章,是对行人检测过去十年的一个回顾,从dataset,main approaches的角度分析了近10年的40多篇论文提出的方 ...

  9. 用python将MSCOCO和Caltech行人检测数据集转化成VOC格式

    代码:转换用的代码放在这里 之前用Tensorflow提供的object detection API可以很方便的进行fine-tuning实现所需的特定物体检测模型(看这里).那么现在的主要问题就是数 ...

随机推荐

  1. CAP理论概述

    CAP理论 CAP原则,指在一个分布式系统中,Consistency(一致性).Availability(可用性).Partitiontolerance(分区容错性),三者不可同时拥有. 一致性(C) ...

  2. Qt 程序自动重启的实现

    正常退出调用exit() 或quit()就行,想要自已重启可按下面代码: void XXX:onRestart() { //类中调用 qApp->exit(); } 主main函数中处理 int ...

  3. 【leetcode】1291. Sequential Digits

    题目如下: An integer has sequential digits if and only if each digit in the number is one more than the ...

  4. mysql优化之SQL优化

    https://www.cnblogs.com/binghou/p/9096610.html (SQL优化)

  5. App自动化-python基础

    定义类:类变量.成员变量.局部变量:构造函数.类方法:实例化对象: # -*- coding: utf-8 -*- ''' Created on 2019-6-25 @author: adminstr ...

  6. H5-Mui框架——修改mui.confirm样式

    问题简述: 使用mui框架默认提示框时,感觉与整体布局不符,因此想要更改其中的样式. 首先,查了一下资料:mui.toast样式风格及位置修改教程 以下是转载过来的文章内容. ============ ...

  7. Netfilter 之 iptable_nat

    初始化 iptable_nat_table_init函数通过调用ipt_register_table完成NAT表注册和钩子函数注册的功能:该流程与iptable_filter的函数调用的函数一致,此处 ...

  8. Linux系统是否被植入木马的排查流程梳理

    在日常繁琐的运维工作中,对linux服务器进行安全检查是一个非常重要的环节.今天,分享一下如何检查linux系统是否遭受了入侵? 一.是否入侵检查 1)检查系统日志 1 2 检查系统错误登陆日志,统计 ...

  9. 使用arcpy.mapping 更新和修复数据源

    来自:https://blog.csdn.net/gisinfo/article/details/6675390 在许多情况下,您都可能需要修复数据源或重定向数据源至其他位置.然而,如果是在每个相关的 ...

  10. redis数据类型及订阅操作

    Redis数据类型详解 Redis键/值介绍 Redis key值是二进制安全的,这意味着可以用任何二进制序列作为key值,从形如“foo”的简单字符串到一个JPG文件的内容都可以.空字符串也是有效k ...