CF915G Coprime Arrays

题解

(看了好半天终于看懂了)

我们先对于每一个i想,那么

我们设

我们用莫比乌斯反演

有了这个式子,可比可以求出△ans呢?我们注意到,由于那个(i/d)是下取整了的,所以i++后(下文的 i 是+1后的 i),只有当(d+1)|i 时答案有变化,于是

我们可以预处理a^n,以及用埃氏筛预处理△ans[i]

CODE

#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<iostream>
#define MAXN 2000005
#define LL long long
#define rg register
#define lowbit(x) (-(x) & (x))
#define ENDL putchar('\n')
#pragma GCC optimize(2)
//#pragma G++ optimize(3)
//#define int LL
using namespace std;
inline int read() {
int f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 - '0' + s;s = getchar();}
return x * f;
}
LL zxy = 1e9 + 7;
LL n,m,i,j,k,s,o;
int p[MAXN],cnt;
int mu[MAXN];
LL po[MAXN],Delta[MAXN];
bool f[MAXN];
inline LL qkpow(LL a,LL b) {
LL res = 1;
while(b) {
if(b & 1) res = res * a % zxy;
b >>= 1;
a = a * a % zxy;
}
return res % zxy;
}
inline void sieve(int n) {
mu[1] = 1;
for(int i = 2;i <= n;i ++) {
if(!f[i]) {
p[++ cnt] = i;
mu[i] = -1;
}
for(int j = 1;j <= cnt && i * p[j] <= n;j ++) {
int y = i * p[j];
f[y] = 1;
if(i % p[j] == 0) {
mu[y] = 0;
break;
}
mu[y] = -mu[i];
}
}
return ;
}
signed main() {
sieve(2000000);
n = read();m = read();
for(int i = 0;i <= 2000000;i ++) po[i] = qkpow(i,n);
for(int i = 1;i <= m;i ++) {
for(int j = i;j <= m;j += i) {
Delta[j] = (Delta[j] + zxy + mu[i] * 1ll * (po[j/i] - po[j/i - 1]) % zxy) % zxy;
}
}
LL ans = 0,as = 0;
for(int i = 1;i <= m;i ++) {
as = (as + Delta[i]) % zxy;
ans = (ans + (as ^ i)) % zxy;
}
printf("%lld\n",ans);
return 0;
}

CF915G Coprime Arrays (莫比乌斯反演)的更多相关文章

  1. CF915G Coprime Arrays 莫比乌斯反演、差分、前缀和

    传送门 差分是真心人类智慧--完全不会 这么经典的式子肯定考虑莫比乌斯反演,不难得到\(b_k = \sum\limits_{i=1}^k \mu(i) \lfloor\frac{k}{i} \rfl ...

  2. 【CodeForces】915 G. Coprime Arrays 莫比乌斯反演

    [题目]G. Coprime Arrays [题意]当含n个数字的数组的总gcd=1时认为这个数组互质.给定n和k,求所有sum(i),i=1~k,其中sum(i)为n个数字的数组,每个数字均< ...

  3. 【CodeForces】915 G. Coprime Arrays 莫比乌斯反演,前缀和,差分

    Coprime Arrays CodeForces - 915G Let's call an array a of size n coprime iff gcd(a1, a2, ..., *a**n) ...

  4. Codeforces 915G Coprime Arrays 莫比乌斯反演 (看题解)

    Coprime Arrays 啊,我感觉我更本不会莫比乌斯啊啊啊, 感觉每次都学不会, 我好菜啊. #include<bits/stdc++.h> #define LL long long ...

  5. Gym - 101982B Coprime Integers (莫比乌斯反演)

    题目链接:http://codeforces.com/gym/101982/attachments 题目大意:有区间[a,b]和区间[c,d],求gcd(x,y)=1,其中x属于[a,b],y属于[c ...

  6. F. Coprime Subsequences 莫比乌斯反演

    http://codeforces.com/contest/803/problem/F 这题正面做了一发dp dp[j]表示产生gcd = j的时候的方案总数. 然后稳稳地超时. 考虑容斥. 总答案数 ...

  7. nyoj CO-PRIME 莫比乌斯反演

    CO-PRIME 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 This problem is so easy! Can you solve it? You are ...

  8. Coprime (单色三角形+莫比乌斯反演(数论容斥))

    这道题,先说一下单色三角形吧,推荐一篇noip的论文<国家集训队2003论文集许智磊> 链接:https://wenku.baidu.com/view/e87725c52cc58bd631 ...

  9. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. ”只用 1 分钟“ - 超简极速 Apk 签名 & 多渠道打包神器

    众所周知,渠道包作为当下国内 Android 应用市场常见的分发方式,当 APP 和后台交互或进行数据上报时,会带上各自的 channel 渠道信息,以此方便企业 & 开发者统计 APP 在各 ...

  2. 慢到不能忍?别忍了,Ubuntu 21.10 APT 源修改为华为云镜像源

    更新记录 2022年4月15日:本文迁移自Panda666原博客,原发布时间:2021年3月29日. 2022年4月15日:将源改为华为云,华为云更方便.Ubuntu从20.04更新到21.10. 切 ...

  3. centos 修改PHP默认版本

    命令行输入export PATH=/usr/local/php/bin:$PATH 然后回车.

  4. 聊聊C#中的composite模式

    写在前面 Composite组合模式属于设计模式中比较热门的一个,相信大家对它一定不像对访问者模式那么陌生,毕竟谁又没有遇到过树形结构呢.不过所谓温故而知新,我们还是从一个例子出发,起底一下这个模式吧 ...

  5. 老子云AMRT全新三维格式正式上线,其性能全面超越现有的三维数据格式

    9月16日,老子云AMRT全新三维格式正式上线,其性能远超现有的三维数据格式.目前已有含国家超算长沙中心.中科院空间所.中车集团等上百家政企事业单位的项目中使用了AMRT格式,大大提升了可视化项目的开 ...

  6. ABAP CDS DDHEADANNO

  7. Spring jdbctemplate和事务管理器

    内部bean 对象结构: @Autowiredprivate IAccountService accountService; @Service("accountService")@ ...

  8. [LINUX] 像电影里的黑客一样用 terminal 作为日常开发

    目录 1.效果预览 2.具体实现 2.1 定位鼠标位置 2.2 获取屏幕位置 2.3 计算鼠标在哪个窗口 2.4 1920x1080 平铺效果设计 2.5 1280x1024 平铺效果设计 3 代码 ...

  9. MAC帧的格式&&wireshark分析MAC帧

    MAC帧的格式 MAC帧较为简单,由五个字段组成 目的地址:6字节 源地址:6字节 类型字段:2字节,用来标志上一层使用的是什么协议,以便把收到的MAC地址帧的数据交给上一层的这个协议. 数据字段:其 ...

  10. NC16430 [NOIP2016]蚯蚓

    NC16430 [NOIP2016]蚯蚓 题目 题目描述 本题中,我们将用符号 \(\lfloor c \rfloor\) 表示对 c 向下取整,例如:\(\lfloor 3.0 \rfloor = ...