CF915G Coprime Arrays (莫比乌斯反演)
CF915G Coprime Arrays

题解
(看了好半天终于看懂了)
我们先对于每一个i想,那么
我们设
我们用莫比乌斯反演
有了这个式子,可比可以求出△ans呢?我们注意到,由于那个(i/d)是下取整了的,所以i++后(下文的 i 是+1后的 i),只有当(d+1)|i 时答案有变化,于是
我们可以预处理a^n,以及用埃氏筛预处理△ans[i]
CODE
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<iostream>
#define MAXN 2000005
#define LL long long
#define rg register
#define lowbit(x) (-(x) & (x))
#define ENDL putchar('\n')
#pragma GCC optimize(2)
//#pragma G++ optimize(3)
//#define int LL
using namespace std;
inline int read() {
int f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 - '0' + s;s = getchar();}
return x * f;
}
LL zxy = 1e9 + 7;
LL n,m,i,j,k,s,o;
int p[MAXN],cnt;
int mu[MAXN];
LL po[MAXN],Delta[MAXN];
bool f[MAXN];
inline LL qkpow(LL a,LL b) {
LL res = 1;
while(b) {
if(b & 1) res = res * a % zxy;
b >>= 1;
a = a * a % zxy;
}
return res % zxy;
}
inline void sieve(int n) {
mu[1] = 1;
for(int i = 2;i <= n;i ++) {
if(!f[i]) {
p[++ cnt] = i;
mu[i] = -1;
}
for(int j = 1;j <= cnt && i * p[j] <= n;j ++) {
int y = i * p[j];
f[y] = 1;
if(i % p[j] == 0) {
mu[y] = 0;
break;
}
mu[y] = -mu[i];
}
}
return ;
}
signed main() {
sieve(2000000);
n = read();m = read();
for(int i = 0;i <= 2000000;i ++) po[i] = qkpow(i,n);
for(int i = 1;i <= m;i ++) {
for(int j = i;j <= m;j += i) {
Delta[j] = (Delta[j] + zxy + mu[i] * 1ll * (po[j/i] - po[j/i - 1]) % zxy) % zxy;
}
}
LL ans = 0,as = 0;
for(int i = 1;i <= m;i ++) {
as = (as + Delta[i]) % zxy;
ans = (ans + (as ^ i)) % zxy;
}
printf("%lld\n",ans);
return 0;
}
CF915G Coprime Arrays (莫比乌斯反演)的更多相关文章
- CF915G Coprime Arrays 莫比乌斯反演、差分、前缀和
传送门 差分是真心人类智慧--完全不会 这么经典的式子肯定考虑莫比乌斯反演,不难得到\(b_k = \sum\limits_{i=1}^k \mu(i) \lfloor\frac{k}{i} \rfl ...
- 【CodeForces】915 G. Coprime Arrays 莫比乌斯反演
[题目]G. Coprime Arrays [题意]当含n个数字的数组的总gcd=1时认为这个数组互质.给定n和k,求所有sum(i),i=1~k,其中sum(i)为n个数字的数组,每个数字均< ...
- 【CodeForces】915 G. Coprime Arrays 莫比乌斯反演,前缀和,差分
Coprime Arrays CodeForces - 915G Let's call an array a of size n coprime iff gcd(a1, a2, ..., *a**n) ...
- Codeforces 915G Coprime Arrays 莫比乌斯反演 (看题解)
Coprime Arrays 啊,我感觉我更本不会莫比乌斯啊啊啊, 感觉每次都学不会, 我好菜啊. #include<bits/stdc++.h> #define LL long long ...
- Gym - 101982B Coprime Integers (莫比乌斯反演)
题目链接:http://codeforces.com/gym/101982/attachments 题目大意:有区间[a,b]和区间[c,d],求gcd(x,y)=1,其中x属于[a,b],y属于[c ...
- F. Coprime Subsequences 莫比乌斯反演
http://codeforces.com/contest/803/problem/F 这题正面做了一发dp dp[j]表示产生gcd = j的时候的方案总数. 然后稳稳地超时. 考虑容斥. 总答案数 ...
- nyoj CO-PRIME 莫比乌斯反演
CO-PRIME 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 This problem is so easy! Can you solve it? You are ...
- Coprime (单色三角形+莫比乌斯反演(数论容斥))
这道题,先说一下单色三角形吧,推荐一篇noip的论文<国家集训队2003论文集许智磊> 链接:https://wenku.baidu.com/view/e87725c52cc58bd631 ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- ER图/模型转换为关系模型
ER图中的主要成分是实体类型和联系类型,转换规则就是如何把实体类型.联系类型转换成关系模式. 1. 二元联系转换 规则1.1(实体类型的转换):将每个实体类型转换成一个关系模式,实体的属性即为关系模式 ...
- 2022年Web前端开发流程和学习路线(详尽版)
前言 前端侧重于人机交互和用户体验,后端侧重于业务逻辑和大规模数据处理.理论上,面向用户的产品里,所有问题(包括产品.设计.后端.甚至看不见的问题)的表现形式,都会暴露在前端,而只有部分问题(数据问题 ...
- 1.2 操作系统的第二个功能——并发功能 -《zobolの操作系统学习札记》
1.2 操作系统的第二个功能--并发功能 目录 1.2 操作系统的第二个功能--并发功能 问1:什么是并发功能?并发功能是必要的吗? 问2:并发功能必须要求拥有多核CPU吗? 问3:多核CPU和单核C ...
- [安洵杯 2019]easy_web-1
1.首先打开题目如下: 2.观察访问的地址信息,发现img信息应该是加密字符串,进行尝试解密,最终得到img名称:555.png,如下: 3.获得文件名称之后,应该想到此处会存在文件包含漏洞,因为传输 ...
- 快速保存Win10锁屏壁纸,收获美丽瞬间
对于写程序而言,每天接触得最多的就是电脑了 所以保持一种开放乐观,豁达美丽的心情是十分有必要的 使用"Everything"工具,输入"LocalState\Assets ...
- SpringBoot配置多环境下的properties配置文件
1.新建SpringBoot项目之后,再另外创建两个properties文件 2.配置详情 主文件 dev和test文件 两者只是里面的配置信息有所不同而已,比如mysql, redis, nacos ...
- 执行docker一系列命令失败
出现这种情况之后,执行下面的命令即可. systemctl restart docker
- Linux for CentOS 下的 keepalived 安装与卸载以及相关命令操作之详细教程
百度百科解释: keepalived 是一个类似于 layer3, 4 & 7 交换机制的软件,也就是我们平时说的第 3 层.第 4 层和第 7 层交换.Keepalived 的作用是检测 w ...
- Vite+TS带你搭建一个属于自己的Vue3组件库
theme: nico 前言 随着前端技术的发展,业界涌现出了许多的UI组件库.例如我们熟知的ElementUI,Vant,AntDesign等等.但是作为一个前端开发者,你知道一个UI组件库是如何被 ...
- 项目中使用@Transactional需要注意的点
项目如果是Spring Boot.或者Spring Cloud,切记需要在启动类上加入@EnableTransactionManagement该注解.否则事务不生效. @Transactional是一 ...