impossible RSA:

没啥好说的,跟我之前文章有道题类似,虽然如此还是花费了很长时间,原因令人落泪,把q = inverse(e,p)的数学式写成了eq mod p导致数学式推导及其困难(能推但无用)

解题脚本:

#coding:utf-8
from Crypto.Util.number import *
import math
n = 15987576139341888788648863000534417640300610310400667285095951525208145689364599119023071414036901060746667790322978452082156680245315967027826237720608915093109552001033660867808508307569531484090109429319369422352192782126107818889717133951923616077943884651989622345435505428708807799081267551724239052569147921746342232280621533501263115148844736900422712305937266228809533549134349607212400851092005281865296850991469375578815615235030857047620950536534729591359236290249610371406300791107442098796128895918697534590865459421439398361818591924211607651747970679849262467894774012617335352887745475509155575074809
e = 65537
c = 8273086882440893360458062957389163084656045191542493618199369528956277216626884353986044368396198156428766254991928690583227149075264217246716715502497271453823598984519037301602775476502736840821942623288225980044817912940317041496675271105285924648202112216540495276381694590948153181922044287087121526235593090625653756288948499134042427779455887781328892794911088854654421379942237290840799205667104402295294924690771201447934282318850564703279100891083617354084345663030868007048086929831020873706613566948846194280096109248694845560054847526215721665897469865078997234299897107511688667705001432037926136840958 import gmpy2
for k in range(1, 100000000):
L = gmpy2.iroot(1 + 4 * k * n * e, 2)
if L[1]:
p = (-1 + L[0]) // (2 * k)
q = (p * k + 1) // e
print(p)
print(q)
print(k)
break k = 46280
p = 150465840847587996081934790667651610347742504431401795762471467800785876172317705268993152743689967775266712089661128372295606682852482012493939368044600366794969553828079064622047080051569090177885299781981209120854290564064662058027679075401901717932024549311396484660557278975525859127898004619405319768113
q = 106253858346069738600667441477316882476975191191010804704017265511396163224664897689076447029585908855140507431062102645373463498213419404889139172575859514095414665779078979976323891310048026205540865067215318951327289428947198682355325809994354509756230772573224732747769822710641878029801786071777441733193
phi = (p - 1) * (q - 1)
# print(phi)
print(gmpy2.gcd(e, phi))
#ed mod phi 余 1
d = gmpy2.invert(e, phi)
print(d)
m = pow(c, d, n)
# m = m
print(long_to_bytes(m))

flag:ACTF{F1nD1nG_5pEcia1_n_i5_nOt_eA5y}

RSA leak:

题目如下:
from sage.all import *
from secret import flag
from Crypto.Util.number import bytes_to_long def leak(a, b):
p = random_prime(pow(2, 64))
q = random_prime(pow(2, 64))
n = p*q
e = 65537
print(n)
print((pow(a, e) + pow(b, e) + 0xdeadbeef) % n) def gen_key():
a = randrange(0, pow(2,256))
b = randrange(0, pow(2,256))
p = pow(a, 4)
q = pow(b, 4)
rp = randrange(0, pow(2,24))
rq = randrange(0, pow(2,24))
pp = next_prime(p+rp)
qq = next_prime(q+rq)
if pp % pow(2, 4) == (pp-p) % pow(2, 4) and qq % pow(2, 4) == (qq-q) % pow(2, 4):
n = pp*qq
rp = pp-p
rq = qq-q
return n, rp, rq n, rp, rq = gen_key()
e = 65537
c = pow(bytes_to_long(flag), e, n)
print("n =", n)
print("e =", e)
print("c =", c)
print("=======leak=======")
leak(rp, rq) '''
n = 3183573836769699313763043722513486503160533089470716348487649113450828830224151824106050562868640291712433283679799855890306945562430572137128269318944453041825476154913676849658599642113896525291798525533722805116041675462675732995881671359593602584751304602244415149859346875340361740775463623467503186824385780851920136368593725535779854726168687179051303851797111239451264183276544616736820298054063232641359775128753071340474714720534858295660426278356630743758247422916519687362426114443660989774519751234591819547129288719863041972824405872212208118093577184659446552017086531002340663509215501866212294702743
e = 65537
c = 48433948078708266558408900822131846839473472350405274958254566291017137879542806238459456400958349315245447486509633749276746053786868315163583443030289607980449076267295483248068122553237802668045588106193692102901936355277693449867608379899254200590252441986645643511838233803828204450622023993363140246583650322952060860867801081687288233255776380790653361695125971596448862744165007007840033270102756536056501059098523990991260352123691349393725158028931174218091973919457078350257978338294099849690514328273829474324145569140386584429042884336459789499705672633475010234403132893629856284982320249119974872840
=======leak=======
122146249659110799196678177080657779971
90846368443479079691227824315092288065
'''
解题思路:

这题我在比赛时也没算出来,在公式的推导过程中就走了弯路导致在有限的时间,有限的算力里面是无法解出答案的。废话不多说,来复盘整理一下思路。

审计代码可以得到如下:

(ae + be + A) mod n1 ≡ B          (A,B都是已知的常数,k为未知数,n1为函数里的n,为了与外面n区分写为n1)

p = a4 同理可以得q

pp = rp + p  同理可以得qq

pp mod 16 = pp - p mod 16   同理可以得qq-q

根据同余性质可以得到如下:

(ae + be ) ≡ (B-A) mod n1

ae ≡ (B-A-be ) mod n1

因为leak函数里面又是一个rsa,所以可以求rq和rp,脚本如下:

def get_rq_or_rp():
#对leak_x分解得到p1,q1
p = 8949458376079230661
q = 13648451618657980711
phi = (p - 1) * (q - 1)
d = inverse(e, phi)
for rp in range(10000, pow(2, 24)):
rq_e = leak_c - 0xdeadbeef #(a^e + b^e)
rq_e = (rq_e - pow(rp, e, leak_n)) % leak_n
rq = pow(rq_e, d, leak_n)
if len(bin(rq)[2:]) <= 24:
print(rp)
print(rq)
return rp, rq

因为 pp mod 16 = pp-p mod 16,可以推出p+k = pp,因为k远小于p,所以可以近似看成p=pp

则n = pp * qq = p * q

可以推出 pq = (ab)4  从而得到ab,然后得出pq

把 pp = rp + p 以及 qq = rq + q 代入n可以得到如下:

n = (ab)4 + a4  * rq + b4  * rp + rp * rq

可以推出  n - rp * rq - (ab)4 = p * rq + q * rp = M

算出M后,两边同乘q,得到如下式子:

rp *  q2 - M * q + pq * rq = 0

解得q,然后q + rq = qq 同理得 pp

完整脚本如下:

#coding:utf-8
from Crypto.Util.number import *
import gmpy2
leak_n = 122146249659110799196678177080657779971
leak_c = 90846368443479079691227824315092288065
n = 3183573836769699313763043722513486503160533089470716348487649113450828830224151824106050562868640291712433283679799855890306945562430572137128269318944453041825476154913676849658599642113896525291798525533722805116041675462675732995881671359593602584751304602244415149859346875340361740775463623467503186824385780851920136368593725535779854726168687179051303851797111239451264183276544616736820298054063232641359775128753071340474714720534858295660426278356630743758247422916519687362426114443660989774519751234591819547129288719863041972824405872212208118093577184659446552017086531002340663509215501866212294702743
e = 65537
c = 48433948078708266558408900822131846839473472350405274958254566291017137879542806238459456400958349315245447486509633749276746053786868315163583443030289607980449076267295483248068122553237802668045588106193692102901936355277693449867608379899254200590252441986645643511838233803828204450622023993363140246583650322952060860867801081687288233255776380790653361695125971596448862744165007007840033270102756536056501059098523990991260352123691349393725158028931174218091973919457078350257978338294099849690514328273829474324145569140386584429042884336459789499705672633475010234403132893629856284982320249119974872840 def get_rq_or_rp():
#对leak_x分解得到p1,q1
p = 8949458376079230661
q = 13648451618657980711
phi = (p - 1) * (q - 1)
d = inverse(e, phi)
for rp in range(10000, pow(2, 24)):
rq_e = leak_c - 0xdeadbeef #(a^e + b^e)
rq_e = (rq_e - pow(rp, e, leak_n)) % leak_n
rq = pow(rq_e, d, leak_n)
if len(bin(rq)[2:]) <= 24:
return rp, rq def get_flag(rp, rq):
#n = pp * qq 因为pp = p + k 又因为k<16所以pp约等于p,同理得q
pq_ab4 = (gmpy2.iroot(n, 4)[0])**4
L = n - rp * rq - pq_ab4 #判别式
M = gmpy2.iroot(L ** 2 - 4 * rp * rq * pq_ab4, 2)
if M[1]:
q1 = (L + M[0]) // (2 * rp)
q2 = (L - M[0]) // (2 * rp)
qq1 = q1 + rq
qq2 = q2 + rq
pp1 = n // qq1
pp2 = n // qq2
if pp1 * qq1 == n:
phi = (pp1 - 1) * (qq1 - 1)
d = gmpy2.invert(e, phi)
m = gmpy2.powmod(c, d, n)
print(long_to_bytes(m))
else:
phi = (pp2 - 1) * (qq2 - 1)
d = gmpy2.invert(e, phi)
m = gmpy2.powmod(c, d, n)
print(long_to_bytes(m)) if __name__ == '__main__':
rp, rq = get_rq_or_rp()
if rp and rq:
get_flag(rp, rq)

flag:ACTF{lsb_attack_in_RSA|a32d7f}

推导过程用到的性质:
同余式相加:若a≡b(mod m),c≡d(mod m),则a ± c≡b ± d(mod m);

不好理解可以如下例子:

17 mod 13 ≡ 4   即 (15 + 2) mod 13 ≡ 4  推出 15 mod 13 ≡ 2

同余其它性质:

传递性:若a≡b(mod m),b≡c(mod m),则a≡c(mod m);
对称性:若a≡b(mod m),则b≡a (mod m);
反身性:a≡a (mod m);
同余式相乘:若a≡b(mod m),c≡d(mod m),则ac≡bd(mod m)。

总结:

rsa求解主要通过推导出它们之间的关系,所以想每一题都能做出来,要有一个好的数论基础 ,没有基础的话就只能像本人一样边做边学,做不做的出来就要靠临场发挥,好的运气(有时候,你推了半天的公式结果根本无法跑出flag,需要的时间太久了)

XCTF分站赛ACTF——Crypto的更多相关文章

  1. Xctf攻防世界—crypto—Normal_RSA

    下载压缩包后打开,看到两个文件flag.enc和pubkey.pem,根据文件名我们知道应该是密文及公钥 这里我们使用一款工具进行解密 工具链接:https://github.com/3summer/ ...

  2. XCTF crypto 不仅仅是Mors

    一. 题目暗示摩斯码,打开文件发现里面有反斜杠的.不管它直接拿来解密 二. 发现一句话是句英文,还有其他的加密方式,后面那串只有两种字符A和B,手抓饼A套餐,b套餐 培根加密,拿来解密后,得到flag

  3. 【CTF】XCTF Misc 心仪的公司 & 就在其中 writeup

    前言 这两题都是Misc中数据包的题目,一直觉得对数据包比较陌生,不知道怎么处理. 这里放两道题的wp,第一题strings命令秒杀觉得非常优秀,另外一题有涉及RSA加密与解密(本文不具体讨论RSA非 ...

  4. javax.crypto.BadPaddingException: Given final block not properly padded 解决方法

    下面的 Des 加密解密代码,在加密时正常,但是在解密是抛出错误: javax.crypto.BadPaddingException: Given final block not properly p ...

  5. 使用crypto模块实现md5加密功能(解决中文加密前后端不一致的问题)

    正常情况下使用md5加密 var crypto = require('crypto'); var md5Sign = function (data) { var md5 = crypto.create ...

  6. javax.crypto.BadPaddingException: Given final block not properly padded

    一.报错 写了一个加密方法,在Windows上运行没有问题,在Linux上运行时提示如下错误: javax.crypto.BadPaddingException: Given final block ...

  7. Liunx-https-java.lang.NoClassDefFoundError: javax/crypto/SunJCE_b

    错误信息: java.lang.NoClassDefFoundError: javax/crypto/SunJCE_b at javax.crypto.KeyGenerator.a(DashoA13* ...

  8. node crypto md5加密,并解决中文不相同的问题

    在用crypto模块时碰到了加密中文不相同的问题,多谢群里面@蚂蚁指定 1:解决中文不同的问题 function md5Pay(str) { str = (new Buffer(str)).toStr ...

  9. Crypto++ 动态链接编译与实例测试

    测试用例的来源<Crypto++入门学习笔记(DES.AES.RSA.SHA-256)> 解决在初始化加密器对象时触发异常的问题: CryptoPP::AESEncryption aesE ...

随机推荐

  1. 220726 T1 树染色问题 (树的直径)

    题目描述 高钧在校园中漫步时,经过了一棵树.这时,几个同学突然冒出来控制住了他. 这棵树有 nn 个节点, 每个节点有黑白两种颜色, 为了更好的 alb , 需要把所有节点染成同一种颜色. 为了更好的 ...

  2. 洛谷P3870 [TJOI2009] 开关 (线段树)

    简单的省选题...... 打异或标记即可. 1 #include<bits/stdc++.h> 2 const int N=2e5+10; 3 using namespace std; 4 ...

  3. 2022年最新最详细在IDEA中配置Tomcat(含有详细图解过程)、建立使用IEDA建立一个Web项目的案例

    1.首先已经成功安装过tomcat 如果没有成功安装,参考这篇tomcat安装教程(安装成功可忽略):https://blog.csdn.net/weixin_43304253/article/det ...

  4. C语言爱心表白程序

    #include <stdio.h> #include <math.h> #include <windows.h> #include <tchar.h> ...

  5. F118校准(二)-- 操作步骤(使用PX01 PG点屏,并使用PX01 PG校准F118)

    1. 准备工作 硬件连接: CA310通过USB线材连接PC PX01通过USB线材连接PC F118通过灰排线连接PX01左上角的GPIO扩展口(如下图所示) LCM连接PX01 启动LcdTool ...

  6. 微信小程序——悬浮按钮

    关键:    position: fixed; wxml: <navigator url="/pages/issue/index"><image class='i ...

  7. Kubeadm部署k8s单点master

    Kubeadm部署k8s单点master 1.环境准备: 主机名 IP 说明 宿主机系统 master 10.0.0.17 Kubernetes集群的master节点 CentOS 7.9 node1 ...

  8. letcode刷题记录-day01-两数之和

    题目:两数之和 描述 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target  的那 两个 整数,并返回它们的数组下标. 你可以假设每种输入只会对应一 ...

  9. Golang 和Python 几个小时前 几分钟 几天前的处理

    在用golang爬虫的时候 总会遇到 10天前 10分钟前 刚刚这种很影响我们爬取正常事件 所以我写了个方法 来格式化这种事件 golang 版本 package utils import ( &qu ...

  10. 【NGINX】浅尝

    Introduction Nginx is a web server that can also be used as a reverse proxy, load balancer, mail pro ...