题意有点儿神秘,而且出题人可能有点大病(

  1. 项链由 \(n\) 颗珠子构成,相邻的珠子不能相同。

  2. 每颗珠子上有 \(3\) 个数字,这 \(3\) 个数之间没有顺序,且 \(\gcd\) 为 \(1\)。

为什么珠子是三菱柱啊

明确一下思路:先算出有多少种可能的珠子,再计算方案数。

有多少种可能的珠子莫反一下就好了,很简单。

然后考虑 polya。

设 \(f(n,m)\) 是长度为 \(n\) 的环且环上的数值域为 \([1,m]\),不存在相邻的数相同的环的数量。(下面将 \(f(n,m)\) 写成 \(f(n)\))

来考虑最后两个位置。

  1. 靠左的与第一个相同:\(f(n-2)\times(m-1)\)。

  2. 靠左的与第一个不同:\(f(n-1)\times(m-2)\)。

所以:\(f(n)=(m-2)\times f(n-1)+(m-1)\times f(n-2)\)。

注意到这玩意儿是 \([x^n]\frac{m(m-1)x^2}{1-(m-2)x-(m-1)x^2}=m(m-1)[x^{n-2}]\frac{1}{1-(m-2)x-(m-1)x^2}\)。

对于后面这玩意儿,如果你懒得算的话,可以设一个 \(p[k][m]=x^{kn}\pmod{1-(m-2)x-(m-1)x^2}\),然后像快速幂那样乘起来。(其实就和矩阵的光速幂是一个玩意儿)

你也可以直接把通项推出来,得到 \(f(n)=(m-1)^n+(-1)^n(m-1)\)。

然后。。。如果 \(n\) 是 \(1e9+7\) 的倍数,你可就有大麻烦了。。。

需要将模数修改为 \((1e9+7)^2\),然后写龟速乘。

#include<cstdio>
typedef long long ll;
const int SZ=1<<10|5,M=1e7+5,mod=1e9+7,MOD=mod-1;
int T,mx,top,a[15],pri[M],mu[M],Smu[M];ll n[15];bool zhi[M];
int len,ans,k[15];ll p[15];
int p1[SZ],p2[SZ],p3[SZ];
inline void sieve(const int&M){
mu[1]=1;
for(int i=2;i<=M;++i){
if(!zhi[i])pri[++top]=i,mu[i]=-1;
for(int x,j=1;j<=top&&(x=i*pri[j])<=M;++j){
zhi[x]=true;if(!(i%pri[j]))break;mu[x]=-mu[i];
}
}
for(int i=1;i<=M;++i)Smu[i]=Smu[i-1]+mu[i];
}
inline int pw2(const int&n){
return 1ll*n*n%mod;
}
inline int pw3(const int&n){
return 1ll*pw2(n)*n%mod;
}
inline int Getlim(const int&n){
int L,R,x,sum1(0),sum2(0);
for(L=1;L*L<=n;++L)sum1=(sum1+1ll*(mod+mu[L])*pw3(x=n/L))%mod;
for(;L<=n;L=R+1){
if(x*L>n)--x;R=n/x;
sum1=(sum1+1ll*(Smu[R]-Smu[L-1]+mod)*pw3(x))%mod;
}
for(L=1;L*L<=n;++L)sum2=(sum2+1ll*(mod+mu[L])*pw2(x=n/L))%mod;
for(;L<=n;L=R+1){
if(x*L>n)--x;R=n/x;
sum2=(sum2+1ll*(Smu[R]-Smu[L-1]+mod)*pw2(x))%mod;
}
return 166666668ll*(sum1+3ll*sum2+2)%mod;
}
inline int pow(const int&idx){
return 1ll*p1[idx&1023]*p2[idx>>10&1023]%mod*p3[idx>>20]%mod;
}
int kx;
inline void DFS(const ll&n,const int&id,const ll&d,const int&phi,const int&m){
if(id==len+1){
ans=(ans+1ll*(pow((n/d)%MOD)+((n/d)&1?mod+1-m:m-1))*phi)%mod;return;
}
DFS(n,id+1,d,phi,m);
ll fd=p[id];int fphi=p[id]%mod-1;
for(int i=1;i<=k[id];++i){
DFS(n,id+1,d*fd,1ll*phi*fphi%mod,m);
fd=fd*p[id];fphi=1ll*fphi*p[id]%mod;
}
}
inline void init(int x,const int&lim){
p1[0]=p2[0]=p3[0]=1;
p1[1]=x;
for(int i=1;i<=1024;++i){
if((i<<0*10)>lim)return;p1[i]=1ll*p1[i-1]*x%mod;
}
x=p1[1024];p2[1]=x;
for(int i=1;i<=1024;++i){
if((i<<1*10)>lim)return;p2[i]=1ll*p2[i-1]*x%mod;
}
x=p2[1024];p3[1]=x;
for(int i=1;i<=1024;++i){
if((i<<2*10)>lim)return;p3[i]=1ll*p3[i-1]*x%mod;
}
}
inline int INV(int n){
int b=mod-2,ans(1);for(;b;b>>=1,n=1ll*n*n%mod)if(b&1)ans=1ll*ans*n%mod;return ans;
}
inline int Solve(ll n,int m){
ll N=n;
m=Getlim(m);init(m-1,n>MOD?MOD:n);len=ans=0;
for(int i=2;1ll*i*i<=n;++i)if(!(n%i)){
p[++len]=i;k[len]=0;while(!(n%i))++k[len],n/=i;
}
if(n^1)p[++len]=n,k[len]=1;
DFS(N,1,1,1,m);
return 1ll*ans*INV(N%mod)%mod;
}
namespace HELL_MOD{
typedef long long ll;
const ll mod=1000000007ll*1000000007ll;
ll p1[SZ],p2[SZ],p3[SZ],p4[SZ],p5[SZ];ll ans;
inline ll Mod(const ll&n){
return n<0?n+mod:n>=mod?n-mod:n;
}
inline ll Add(const ll&a,const ll&b){
return a+b>=mod?a+b-mod:a+b;
}
inline ll times(ll a,ll b){
const unsigned long long x=a,y=b,MOD=mod;
return (x*y-(unsigned long long)((long double)x/MOD*y)*MOD+MOD)%mod;
if(a<b)a^=b^=a^=b;
ll ans(0);for(;b;b>>=1,a=Add(a,a))if(b&1)ans=Add(ans,a);return ans;
}
inline ll pw2(const ll&n){
return times(n,n);
}
inline ll pw3(const ll&n){
return times(pw2(n),n);
}
inline ll Getlim(const int&n){
int L,R,x;ll sum1(0),sum2(0);
for(L=1;L*L<=n;++L)sum1=Add(sum1,times(Mod(mu[L]),pw3(x=n/L)));
for(;L<=n;L=R+1){
if(x*L>n)--x;R=n/x;
sum1=Add(sum1,times(Add(Mod(Smu[R]),Mod(mod-Smu[L-1])),pw3(x)));
}
for(L=1;L*L<=n;++L)sum2=Add(sum2,times(Mod(mu[L]),pw2(x=n/L)));
for(;L<=n;L=R+1){
if(x*L>n)--x;R=n/x;
sum2=Add(sum2,times(Add(Mod(Smu[R]),Mod(mod-Smu[L-1])),pw2(x)));
}
return times(833333345000000041ll,(sum1+3ll*sum2+2)%mod);
}
inline ll pow(const ll&idx){
return times(times(times(times(p1[idx&1023],p2[idx>>10&1023]),p3[idx>>20&1023]),p4[idx>>30&1023]),p5[idx>>40]);
}
inline void DFS(const ll&n,const int&id,const ll&d,const ll&phi,const ll&m){
if(id==len+1){
ans=Add(ans,times(Add(pow(n/d),(n/d)&1?mod+1-m:m-1),phi));
return;
}
DFS(n,id+1,d,phi,m);
ll fd=p[id],fphi=p[id]%mod-1;
for(int i=1;i<=k[id];++i){
DFS(n,id+1,d*fd,phi*fphi,m);
fd=fd*p[id];fphi=fphi*p[id];
}
}
inline void init(ll x,const ll&lim){
p1[0]=p2[0]=p3[0]=p4[0]=p5[0]=1;
p1[1]=x;
for(int i=1;i<=1024;++i){
if((1ll*i<<0*10)>lim)return;p1[i]=times(p1[i-1],x);
}
x=p1[1024];p2[1]=x;
for(int i=1;i<=1024;++i){
if((1ll*i<<1*10)>lim)return;p2[i]=times(p2[i-1],x);
}
x=p2[1024];p3[1]=x;
for(int i=1;i<=1024;++i){
if((1ll*i<<2*10)>lim)return;p3[i]=times(p3[i-1],x);
}
x=p3[1024];p4[1]=x;
for(int i=1;i<=1024;++i){
if((1ll*i<<3*10)>lim)return;p4[i]=times(p4[i-1],x);
}
x=p4[1024];p5[1]=x;
for(int i=1;i<=1024;++i){
if((1ll*i<<4*10)>lim)return;p5[i]=times(p5[i-1],x);
}
}
inline int Solve(ll n,ll m){
ll N=n;
m=Getlim(m);init(m-1,n);len=ans=0;
for(int i=2;1ll*i*i<=n;++i)if(!(n%i)){
p[++len]=i;k[len]=0;while(!(n%i))++k[len],n/=i;
}
if(n^1)p[++len]=n,k[len]=1;DFS(N,1,1,1,m);
return 1ll*(ans/::mod)*INV(N/::mod)% ::mod;
}
}
signed main(){
scanf("%d",&T);
for(int i=1;i<=T;++i){
scanf("%lld%d",n+i,a+i);
if(a[i]>mx)mx=a[i];
}
sieve(mx);
for(int i=1;i<=T;++i)printf("%d\n",n[i]%mod?Solve(n[i],a[i]):HELL_MOD::Solve(n[i],a[i]));
}

LGP3307题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. JAVA 变量的概述

    变量的概述         用于存储可变数据的容器. 变量存在的意义 计算机主要用于处理生活中的数据,由于生活中存在大量的可变数据,那么计算机就必须具备存储可变数据的能力. 比如: 1.时间每一秒都在 ...

  2. 在CentOS中安装与配置Server JRE 8

    感谢大佬:https://my.oschina.net/zx0211/blog/508221?p=1 其实也很简单: 1.从http://www.oracle.com/technetwork/java ...

  3. Token+Redis实现接口幂等性

    一.什么是 幂等性 在编程中,幂等性的特点就是其任意多次执行的效果和一次执行的效果所产生的影响是一样的. 二.Token+Redis的实现思路 1.数据提交前要向服务的申请 token(用户登录时可以 ...

  4. Arch Linux遇到的坑(下)

    明天就要开学,终于赶忙又熟悉了新环境的用法,现在已经基本满足了日常需求,再记录一些坑-. 电脑没有声音 因为上次离奇的自己好了,我就没有再管了,但是后来使用chrome的时候还是没有声音,我就用了图形 ...

  5. 手写一个线程池,带你学习ThreadPoolExecutor线程池实现原理

    摘要:从手写线程池开始,逐步的分析这些代码在Java的线程池中是如何实现的. 本文分享自华为云社区<手写线程池,对照学习ThreadPoolExecutor线程池实现原理!>,作者:小傅哥 ...

  6. Ubuntu - root, sudo, su, passwd

    1.rootubuntu中默认是不使用root账户的,当然也是可以开启并设置为默认登录账户的,但ubuntu不建议使用而已,毕竟root账户拥有所有权限,可能会出现一些误操作之类.在普通账户中,如果遇 ...

  7. python基础语法_python中的布尔类型详解

    转自:http://www.cnblogs.com/521yywzyzhc/p/6264885.html   我们已经了解了Python支持布尔类型的数据,布尔类型只有True和False两种值,但是 ...

  8. Spring Security Auth/Acl 实践指南

    目录 导语 Web Api Authentication/Authorization 示例接口 添加 Maven 依赖 实现接口 访问接口 认证/鉴权 配置认证/鉴权 添加 Maven 依赖 创建数据 ...

  9. Spring Boot-开启第一步

    Spring Boot开发的目的是为了简化Spring应用的开发,使用Spring Boot可以零配置开启一个Spring应用.这得益于Spring Boot中的自动配置组件,如果开发者觉得默认的配置 ...

  10. find+grep+正则表达式

    目录 find+grep+正则表达式 1.find 2.grep 3.正则表达式 find+grep+正则表达式 1.find 根据文件的名称或者属性查找文件. # 自己在 /root/adc目录下长 ...