栈帧

概念

栈帧:也叫过程活动记录,是编译器用来实现过程/函数调用的一种数据结构,每次函数的调用,都会在调用栈(call stack)上维护一个独立的栈帧(stack frame)

栈帧的内容

  • 函数的返回地址和参数

  • 临时变量:包括函数的非静态局部变量,以及编译器自动生成的其他临时变量

  • 函数调用上下文

  • 两个指针:ebp又称帧指针(frame pointer),指向当前栈帧的底部; esp,又称栈针织(stack pointer),始终指向栈顶

函数调用

函数调用过程中分:函数调用者(caller)和被调用的函数(callee)

调用者需要知道被调用函数的返回值

被调用函数需要知道传入的参数和返回的地址

步骤:

  1. 参数入栈:将参数按照调用约定依次压入系统栈

  2. 返回地址入栈:将当前代码区调用指令的下一条指令地址压入栈,供函数返回时继续执行,也就是保护现场和恢复现场

  3. 代码跳转:处理器将代码区跳转到被调用函数的入口处

  4. 栈帧调整:

  5. 将调用者的ebp压入栈,保存指向栈底ebp地址(用于恢复现场),此时esp指向新的栈顶位置

  6. 将当前栈帧切换到新栈帧(将esp值装入ebp,跟新栈底),此时ebp指向栈顶,

  7. 给新栈帧分配空间

函数返回

步骤:

  1. 保存被调用函数的返回值到eax寄存器

  2. 恢复esp同时收回局部变量空间

  3. 将上一个栈帧底部位置恢复到ebp

  4. 弹出当前元素栈顶元素,从栈中取到返回地址,并跳转到该位置,也就是再回到调用者,执行后续代码

举例说明

c代码:

int sum(int x,int y){
int z=x+y;
return z;
}
int main(){
int a=1;
int b=3;
int c=sum(a,b);
}

汇编,且关闭编译器优化-O0

    .file    "test.c"
.text
.globl sum
.def sum; .scl 2; .type 32; .endef
.seh_proc sum
sum:
pushq %rbp
.seh_pushreg %rbp
movq %rsp, %rbp
.seh_setframe %rbp, 0
subq $16, %rsp
.seh_stackalloc 16
.seh_endprologue
movl %ecx, 16(%rbp)
movl %edx, 24(%rbp)
movl 16(%rbp), %edx
movl 24(%rbp), %eax
addl %edx, %eax
movl %eax, -4(%rbp)
movl -4(%rbp), %eax
addq $16, %rsp
popq %rbp
ret
.seh_endproc
.def __main; .scl 2; .type 32; .endef
.globl main
.def main; .scl 2; .type 32; .endef
.seh_proc main
main:
pushq %rbp
.seh_pushreg %rbp
movq %rsp, %rbp
.seh_setframe %rbp, 0
subq $48, %rsp
.seh_stackalloc 48
.seh_endprologue
call __main
movl $1, -4(%rbp)
movl $3, -8(%rbp)
movl -8(%rbp), %edx
movl -4(%rbp), %eax
movl %eax, %ecx
call sum
movl %eax, -12(%rbp)
movl $0, %eax
addq $48, %rsp
popq %rbp
ret
.seh_endproc
.ident "GCC: (x86_64-posix-seh-rev0, Built by MinGW-W64 project) 8.1.0"

过程详解:

补充:整个过程中虽然看不到RIP,但它一直被使用,RIP每次都指向下一条将要运行的指令

每次取出一条指令时,RIP就会自动偏移,指向下一条指令,如图:

当发生函数调用时,也就是call时,callq 指令会自动将rip压入栈,并将rip指向被调用的函数,如

先RIP指向 callq f(),下一次执行就是调用函数f(),查看此时的rsp

接着执行该指令

ip跳到了f()内的第一条指令push %rbq,再查看rsp

rsp中存入了0x00401586,正是call的下一条指令的位置

且也可以查看变量在栈帧内的存储形式

将1赋值给变量b,即mov 1 -4(%bp),查看内存

就是在bp的偏移4字节处

再来看ret,ret是将之前存的RIP给出栈,经过sub分配空间然后再add释放空间,pop rbp后,rsp刚好在旧的rip处

此时执行ret,会自动执行pop rip,也就恢复了现场

也就是说:

call f的本质是:

push %rip
mov f,%rip

ret的本质是:

pop %rip

C温故补缺(十五):栈帧的更多相关文章

  1. Kinect for Windows SDK v2.0 开发笔记 (十五) 手势帧

     (转载请注明出处) 使用SDK: Kinect for Windows SDK v2.0 public preview1409 同前面,由于SDK未完毕,不附上函数/方法/接口的超链接. 这次最 ...

  2. “全栈2019”Java多线程第三十五章:如何获取线程被等待的时间?

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...

  3. “全栈2019”Java多线程第二十五章:生产者与消费者线程详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...

  4. “全栈2019”Java多线程第十五章:当后台线程遇到finally

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...

  5. “全栈2019”Java异常第十五章:异常链详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java异 ...

  6. “全栈2019”Java第九十五章:方法中可以定义静态局部内部类吗?

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  7. “全栈2019”Java第八十五章:实现接口中的嵌套接口

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  8. “全栈2019”Java第七十五章:内部类持有外部类对象

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  9. “全栈2019”Java第六十五章:接口与默认方法详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  10. “全栈2019”Java第五十五章:方法的静态绑定与动态绑定

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

随机推荐

  1. 【面试题】JS使用parseInt()、正则截取字符串中数字

    JS使用parseInt()和正则截取字符串中数字 点击打开视频讲解更加详细 parseInt() 函数 定义和用法 parseInt() 函数可解析一个字符串,并返回一个整数. 当参数 radix ...

  2. csp每日习题

    欢迎加入:qq群号:1054587486 做题链接:https://csp.ccf.org.cn/csp/index.action?_access_code=1584494752035 点击模拟考试进 ...

  3. 关于Ubuntu系统无法输入中文的问题,即使做了种种修改

    原网址:https://shurufa.sogou.com/linux/guide 在经历一晚上一及一下午的奋战后,找到了最终解决方案,该解决方案使用的是搜狗输入法 在操作之前有以下注意事项:所有操作 ...

  4. synchronized锁详解

    synchronized的意义 解决了Java共享内存模型带来的线程安全问题: 如:两个线程对初始值为 0 的静态变量一个做自增,一个做自减,各做 5000 次,结果是 0 吗?(针对这个问题进行分析 ...

  5. ProxySQL 定时调度

    转载自:https://www.jianshu.com/p/410ff5897c27 Scheduler是 v1.2.0 引入的特性. ProxySQL的Scheduler是一个类似于定时任务系统(c ...

  6. Kibana:Canvas入门

  7. Secret概述

    Secret 概述 Kubernetes Secret 对象可以用来储存敏感信息,例如:密码.OAuth token.ssh 密钥等.如果不使用 Secret,此类信息可能被放置在 Pod 定义中或者 ...

  8. 堆Pwn:House Of Storm利用手法

    0x00:介绍 利用手法的背景: house of storm是一种结合了unsorted bin attack和Largebin attack的攻击技术,其基本原理和Largebin attack类 ...

  9. 记一次批量更新整型类型的列 → 探究 UPDATE 的使用细节

    开心一刻 今天,她给我打来电话 她:你明天陪我去趟医院吧 我:怎么了 她:我怀孕了,陪我去打胎 我:他的吗 她:嗯 我心一沉,犹豫了片刻:生下来吧,我养! 她:他的孩子,你不配养! 我:我随孩子姓 需 ...

  10. linux搭建内网邮件服务器

    一.配置发件服务器 1.1 根据现场IP,配置主机名 vi /etc/hosts 192.168.40.133 mail.test.com 将主机名更改为邮件服务器域名mail.test.com 1. ...