HDU 1533 Going Home (最大权完美匹配)
<题目链接>
题目大意:
给你一张地图,地图上m代表人,H代表房子,现在所有人要走到房子内,且一个房子只能容纳一个人(人和房子的数量相同),人每移动一步,需要花1美元,问所有人走到房子中的最小花费。
解题分析:
一个人对应一个房子,并且人与房子之间的花费相当于权值,很明显的最大权完美匹配,直接套用KM算法即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define INF 0x3f3f3f3f
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define mem(a,b) memset(a,b,sizeof(a))
#define mp make_pair
#define fi first
#define se second
const int N = ;
char str[];
typedef pair<int,int>pii;
int n,m,nx,ny;
int lx[N],ly[N];
int linker[N],slack[N],visx[N],visy[N],w[N][N];
pii locx[N],locy[N]; //记录二分图中x,y两部分所有点的坐标
inline int dis(pii tmp1,pii tmp2){ //计算两点之间的花费
return (abs(tmp1.fi-tmp2.fi)+abs(tmp1.se-tmp2.se));
}
bool DFS(int x){
visx[x]=;
rep(y,,ny){
if(visy[y])continue;
int tmp=lx[x]+ly[y]-w[x][y];
if(!tmp){
visy[y]=;
if(linker[y]==-||DFS(linker[y])){
linker[y]=x;
return true;
}
}else slack[y]=min(slack[y],tmp);
}
return false;
}
int KM(){
mem(linker,-);mem(ly,);
rep(i,,nx){
lx[i]=-INF;
rep(j,,ny)lx[i]=max(lx[i],w[i][j]);
}
rep(x,,nx){
rep(i,,ny)slack[i]=INF;
while(true){
mem(visx,);mem(visy,);
if(DFS(x))break;
int d=INF;
rep(i,,ny)if(!visy[i])d=min(d,slack[i]);
rep(i,,nx)if(visx[i])lx[i]-=d;
rep(i,,ny)
if(visy[i])ly[i]+=d;
else slack[i]-=d;
}
}
int res=;
rep(y,,ny)
if(linker[y]!=-)
res+=w[linker[y]][y];
return res;
}
int main(){
while(~scanf("%d%d",&n,&m),n||m){
nx=ny=;
rep(i,,n){
scanf("%s",str+);
rep(j,,m){
if(str[j]=='m')locx[++nx]=mp(i,j); //存下x,y两部分坐标
if(str[j]=='H')locy[++ny]=mp(i,j);
}
}
rep(i,,nx) rep(j,,ny){
w[i][j]=-dis(locx[i],locy[j]); //得到两点之间的最短距离,也就是人到对应的房子所需花的钱,因为最后要求最小花费,所以这里要先取反
}
printf("%d\n",(-)*KM()); //得到最小花费
}
}
2018-11-18
HDU 1533 Going Home (最大权完美匹配)的更多相关文章
- HDU 1533 Going Home(KM完美匹配)
HDU 1533 Going Home 题目链接 题意:就是一个H要相应一个m,使得总曼哈顿距离最小 思路:KM完美匹配,因为是要最小.所以边权建负数来处理就可以 代码: #include <c ...
- HDU 3488 Tour (最大权完美匹配)【KM算法】
<题目链接> 题目大意:给出n个点m条单向边边以及经过每条边的费用,让你求出走过一个哈密顿环(除起点外,每个点只能走一次)的最小费用.题目保证至少存在一个环满足条件. 解题分析: 因为要求 ...
- hdu2255 奔小康赚大钱 km算法解决最优匹配(最大权完美匹配)
/** 题目:hdu2255 奔小康赚大钱 km算法 链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 题意:lv 思路:最优匹配(最大权完美匹配) ...
- 【模板】二分图最大权完美匹配KM算法
hdu2255模板题 KM是什么意思,详见百度百科. 总之知道它可以求二分图最大权完美匹配就可以了,时间复杂度为O(n^3). 给张图. 二分图有了边权,求最大匹配下的最大权值. 所以该怎么做呢?对啊 ...
- 【二分图最大权完美匹配】【KM算法】【转】
[文章详解出处]https://www.cnblogs.com/wenruo/p/5264235.html KM算法是用来求二分图最大权完美匹配的.[也就算之前的匈牙利算法求二分最大匹配的变种??] ...
- 二分图学习记 之 KM算法 二分图最大权完美匹配。
前置知识 :匈牙利算法 首先有这样一张图,求这张图的最大权完美匹配. 当然如果你不想看这些渣图的话,您可以转到 洛谷 运动员最佳匹配问题 下面我来强行解释一下KM算法 左边一群妹子找汉子,但是每个妹子 ...
- 【模板】二分图最大权完美匹配(KM算法)/洛谷P6577
题目链接 https://www.luogu.com.cn/problem/P6577 题目大意 给定一个二分图,其左右点的个数各为 \(n\),带权边数为 \(m\),保证存在完美匹配. 求一种完美 ...
- Solution -「洛谷 P6577」「模板」二分图最大权完美匹配
\(\mathcal{Description}\) Link. 给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...
- hdu 1853 Cyclic Tour 最大权值匹配 全部点连成环的最小边权和
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) ...
随机推荐
- iOS -- Effective Objective-C 阅读笔记 (2)
1: 多用类型常量, 少用 #define 预处理指令 #define 预处理指令会把碰到的所有 指定名称 一律换位 定义的内容, 这样的话, 假设此指令在某个头文件中, 那么所有引入这个头文件的代码 ...
- Modbus库开发笔记之五:Modbus RTU Slave开发
Modbus在串行链路上分为Slave和Master,这一节我们就来开发Slave.对于Modbus RTU从站来说,需要实现的功能其实与Modbus TCP的服务器端是一样的.其操作过程也是一样的. ...
- Pl/SQL 编程
Pl/SQL 编程 一:前言 二:Pl/Sql 概述 二 —— 1: Pl/Sql块结构 [declare] --声明部分,可选 begin --执行部分,必须 [exception] -- ...
- Confluence 6 workbox 通知包含了什么
当一个用户在 Confluence 中进行下面的操作的时候,workbox 将会显示为通知: 分享(Shares)你的页面或者博客页面. 提及(Mentions)你的页面,博客页面,回复或者任务. 你 ...
- ionic3 隐藏子页面tabs
看了几天ionic3 问题还挺多的,今天想把所有子页面tabs 给去掉,整了半天,发现app.Module 是可以配置的 修改 IonicModule.forRoot(MyApp) imports: ...
- 理解call及apply
转载自:http://www.zhihu.com/question/20289071 //call 和 apply 都是为了改变某个函数运行时的 context 即上下文而存在的,换句话说,就是为了改 ...
- 五.ssh远程管理服务
01. 远程管理服务知识介绍 1) SSH远程登录服务介绍说明 SSH是Secure Shell Protocol的简写,由 IETF 网络工作小组(Network Working Group)制定: ...
- 【kafka】celery与kafka的联用问题
背景:一个小应用,用celery下发任务,任务内容为kafka生产一些数据. 问题:使用confluent_kafka模块时,单独启用kafka可以正常生产消息,但是套上celery后,kafka就无 ...
- Python随手记—各种方法的使用
os.popen()方法的使用 os.popen()方法用于从一个命令打开一个管道. 语法:os.popen(command[, mode[, bufsize]]) 其中 command是使用的 ...
- Mac下Java JDK的下载安装和配置
一.下载安装 打开一个搜索引擎,输入JDK,找到Java JDK 如图: 点击打开,同意协议开始下载如图: 下载好以后,安装即可. 安装成功以后,进入根目录,可以找到JDK安装的位置: 资源库——& ...