hihocoder--1384 -- Genius ACM (倍增 归并)
题目链接 1384 -- Genius ACM
给定一个整数 m,对于任意一个整数集合 S,定义“校验值”如下:
从集合 S 中取出 m 对数(即 2*M 个数,不能重复使用集合中的数,如果 S 中的整 数不够 m 对,则取到不能取为止),使得“每对数的差的平方”之和最大,这个最大值 就称为集合 S 的“校验值”。
现在给定一个长度为 n 的数列 A 以及一个整数 k。我们要把 A 分成若干段,使得 每一段的“校验值”都不超过 k。求最少需要分成几段。
#include<bits/stdc++.h> using namespace std; #define maxn 600005 #define LL long long int a[maxn],b[maxn],c[maxn]; int n,m; LL k; void mem(int l,int mid,int r){ ,zz=r,ii=l; while(i<=mid&&j<=r){ if(b[i]<b[j]) c[ii++]=b[i++]; else c[ii++]=b[j++]; } while(i<=mid) c[ii++]=b[i++]; while(j<=r) c[ii++]=b[j++]; } bool xxx(int l,int mid,int r){ mem(l,mid,r); LL ans=,i=,j=l,kk=r; while(j<kk&&i<m){ LL z=; z=1LL*(c[j++]-c[kk--]); ans+=z*z; i++; } ; ; } bool work(int l,int r,int rr){ ;j<=r;j++) b[j]=a[j]; // 每次只用在b后面加上我们后来倍增的一段区间 sort(b+rr+,b+r+); // 把增加的一段排序 后面可以用归并 ; ; } int main(){ int t; cin>>t; while(t--){ scanf("%d%d%lld",&n,&m,&k); ;j<=n;j++){ scanf("%d",&a[j]); } ; ,p=,r=l; b[]=a[]; while(l<=n){ if((r+p)<=n&&work(l,r+p,r)){ for(int i=l;i<=r+p;i++) b[i]=c[i]; //把每次符合的序列按顺序放在b里面 r+=p; p*=; }; ){ l=r+; r=l; p=; ans++; } } cout<<ans<<endl; } }
hihocoder--1384 -- Genius ACM (倍增 归并)的更多相关文章
- [hihocoder #1384] Genius ACM 解题报告(倍增)
题目链接:http://hihocoder.com/problemset/problem/1384 题目大意: 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M ...
- hihoCoder#1384 : Genius ACM
对于一个固定的区间$[l,r]$,显然只要将里面的数字从小到大排序后将最小的$m$个和最大的$m$个配对即可. 如果固定左端点,那么随着右端点的右移,$SPD$值单调不降,所以尽量把右端点往右移,贪心 ...
- $CH0601\ Genius\ ACM$ 倍增优化DP
ACWing Description 给定一个长度为N的数列A以及一个整数T.我们要把A分成若干段,使得每一段的'校验值'都不超过N.求最少需要分成几段. Sol 首先是校验值的求法: 要使得'每对数 ...
- CH0601 Genius ACM【倍增】【归并排序】
0601 Genius ACM 0x00「基本算法」例题 描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数 ...
- Contest Hunter 0601 Genius ACM
Genius ACM Advanced CPU Manufacturer (ACM) is one of the best CPU manufacturer in the world. Every d ...
- ACM-ICPC Beijing 2016 Genius ACM(倍增+二分)
描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数,如果 S 中的整 数不够 M 对,则取到不能取为止),使 ...
- hihocoder1384/CH0601 Genius ACM[贪心+倍增+归并排序]
提交地址. 关于lyd给的倍增方法,即从当前枚举向后的$2^k$长度($k$从$1$开始),如果可行就将$k$加一以扩大范围,不可行时将范围不断减半直至$0$. 举个例子,假设当下在1,目标答案是13 ...
- Genius ACM
题解: 发现匹配一定会选最大和最小匹配,确定左右端点之后nlogn排序后算 比较容易想到二分 最坏情况每次1个 $n^2*(logn)^2$ 没错暴力的最差复杂度是$n^2*logn$的 发现长度与次 ...
- XJOI 7191 Genius ACM
二分+倍增 题目 题目中的最大校验值应由数组排序后,取出最大值和最小值,次大值和次小值--进行做差平方取和 所以在加入一个新的数时,校验值是不会下降的 那么可以发现,校验值是单调递增的,所以可以用二分 ...
随机推荐
- cmake : undefined reference to dlopen, dlclose, dlsym and dlerror
链接出了问题 添加头文件 #include <dlfcn.h> 添加库 target_link_libraries(PROJECT_NAME ${CMAKE_DL_LIBS})
- fatal: HttpRequestException encountered解决方法
最近在windows下git push提交就会弹出如下错误: 网上查了一下发现是Github 禁用了TLS v1.0 and v1.1,必须更新Windows的git凭证管理器,才行. https:/ ...
- hadoop第一个例子
Java.io.URL 1.编写java程序 package com.company; import java.io.IOException; import java.io.InputStream; ...
- NIO和经典IO
NIO未必更快,在Linux上使用Java6完成的测试中,多线程经典I/O设计胜出NIO30%左右 异步I/O强于经典I/O:服务器需要支持超大量的长期连接,比如10000个连接以上,不过各个客户端并 ...
- Session和Cookie介绍及常见httpcode
Cookie和Session,及常见httpcode 1.cookie和session简介: cookie是放在客户端的键值对,用来识别用户信息的,主要包括:名字,值,过期时间,路径和域.路径与域一起 ...
- zabbix添加监控Mysql
起因:zabbix自带的mysql监控模板直接使用会显示“不支持的”因为key的值是通过Mysql用户查看"show global status"信息或者用mysqladmin命令 ...
- 百度编辑器UEditor使用方法
http://www.cnblogs.com/lionden/archive/2012/07/13/ueditor.html 介绍图片上传:http://uikoo9.com/blog/detail/ ...
- 【README.md】Markdown语言常用语法
转自:http://blog.csdn.net/zhaokaiqiang1992 这里只介绍最常用和最常见的功能,若想查看全部的语法,请移步http://wowubuntu.com/markdown/ ...
- 配置 BizTalk Server
使用“基本配置”或“自定义配置”配置 BizTalk Server. 基本配置与自定义配置 如果配置使用域组,则进行“自定义配置”. 如果配置使用自定义组名称而不是默认组名称,则进行“自定 ...
- 51-node-1649齐头并进(最短路)
题意:中文题,没啥坑点: 解题思路:这道题一开始以为要跑两个最短路,后来发现不用,因为如果给定了铁路的线路,那么,公路一定是n个节点无向图的补图,所以,铁路和公路之间一定有一个是可以直接从1到n的,我 ...