带修主席树的模板,因为状态不好所以敲了很长时间,不过写完感觉能更好地理解主席树了。

核心其实就是树状数组套主席树,维护方法不再是以前的那种一步一修改,而是对于树状数组上的每一个点建立一棵权值线段树,然后一点一点地维护。这样就从朴素修改后缀所需要的每次\(O(NlogN)\)的复杂度,变成了修改\(log\)棵树所需要的\(O(Nlog^2N)\)。

几个注意事项:

  1. 本题卡常。请使用离散化后的权值进行建树。

  2. 本题卡常。不要用\(cin\)。

  3. 因为是权值线段树,所以要先删除再添加。

  4. 二分的时候也要带上全家桶(\(lowbit\)对应位)一起修改鸭~

#include <bits/stdc++.h>
using namespace std; const int N = 100010;
int INF = 1000000010; int tot, rt[N]; int n, m, arr[N]; #define mid ((l + r) >> 1)
#define lowbit(x) (x & -x) struct Segment_Tree {
struct Segment_Node {
int ls, rs, sz;
}t[N << 9]; Segment_Tree () {t[0].sz = 0;} void modify (int &v, int l, int r, int w, int del) {
if (v == 0) v = ++tot;
t[v].sz += del;
if (l != r) {
if (w <= mid) {
modify (t[v].ls, l, mid + 0, w, del);
} else {
modify (t[v].rs, mid + 1, r, w, del);
}
}
}
}seg; int cnt, sep[N << 1]; int _sep (int w) {
return lower_bound (sep + 1, sep + 1 + cnt, w) - sep;
} void change (int pos, int val) {
for (int i = pos; i <= n; i += lowbit (i)) {
seg.modify (rt[i], 0, INF, _sep (arr[pos]), -1);
}
arr[pos] = sep[val];
for (int i = pos; i <= n; i += lowbit (i)) {
seg.modify (rt[i], 0, INF, _sep (arr[pos]), +1);
}
} int query (int u, int v, int k) {
static int _u[30], _v[30];
// u 到 v 区间第 k 小
int l = 0, r = INF;
_u[0] = _v[0] = 0;
for (int i = u; i != 0; i -= lowbit (i)) _u[++_u[0]] = rt[i];
for (int i = v; i != 0; i -= lowbit (i)) _v[++_v[0]] = rt[i];
while (l < r) {
int lch = 0;
for (int i = 1; i <= _u[0]; ++i) lch -= seg.t[seg.t[_u[i]].ls].sz;
for (int i = 1; i <= _v[0]; ++i) lch += seg.t[seg.t[_v[i]].ls].sz;
if (k <= lch) {
for (int i = 1; i <= _u[0]; ++i) _u[i] = seg.t[_u[i]].ls;
for (int i = 1; i <= _v[0]; ++i) _v[i] = seg.t[_v[i]].ls;
r = mid;
} else {
for (int i = 1; i <= _u[0]; ++i) _u[i] = seg.t[_u[i]].rs;
for (int i = 1; i <= _v[0]; ++i) _v[i] = seg.t[_v[i]].rs;
l = mid + 1;
k -= lch;
}
}
return r;
} struct Query {
int type, l, r, k, p, w;
}q[N]; int main () {
// cin >> n >> m;
scanf ("%d %d", &n, &m);
for (int i = 1; i <= n; ++i) {
scanf ("%d", &arr[i]);
sep[++cnt] = arr[i];
}
for (int i = 1; i <= m; ++i) {
static char opt[10];
scanf ("%s", opt);
if (opt[0] == 'Q') {
q[i].type = 0;
scanf ("%d %d %d", &q[i].l, &q[i].r, &q[i].k);
} else {
q[i].type = 1;
scanf ("%d %d", &q[i].p, &q[i].w);
sep[++cnt] = q[i].w;
}
}
sort (sep + 1, sep + 1 + cnt);
cnt = unique (sep + 1, sep + 1 + cnt) - sep - 1; INF = cnt;
for (int i = 1; i <= n; ++i) {
for (int j = i; j <= n; j += lowbit (j)) {
seg.modify (rt[j], 0, INF, _sep (arr[i]), +1);
}
}
for (int i = 1; i <= m; ++i) {
if (q[i].type == 0) {
printf ("%d\n", sep[query (q[i].l - 1, q[i].r, q[i].k)]);
} else {
change (q[i].p, _sep (q[i].w)); }
}
}

Luogu P2617 Dynamic Rankings的更多相关文章

  1. luogu P2617 Dynamic Rankings && bzoj 1901 (带修改区间第k大)

    链接:https://www.luogu.org/problemnew/show/P2617 思路: 如果直接在主席树上修改的话,每次修改都会对后面所有的树造成影响,一次修改的复杂度就会变成 : n* ...

  2. luogu P2617 Dynamic Rankings(主席树)

    嘟嘟嘟 一句话题意:带修改区间第\(k\)小. 不修改都会,主席树板子.但是有修改就要比较深入的理解主席树了. 众所周知,主席树中以\(i\)为根的线段树维护的是\([1, i]\)这个前缀的权值,因 ...

  3. luogu P2617 Dynamic Rankings(分块,n <= 1e4)

    嘟嘟嘟 带修改区间第k大. 然而某谷把数据扩大到了1e5,所以用分块现在只能得50分. 分块怎么做呢?很暴力的. 基本思想还是块内有序,块外暴力统计. 对于修改,直接重排修改的数所在块,时间复杂度O( ...

  4. Luogu P2617 Dynamic Rankings(整体二分)

    题目 动态区间第K小模板题. 一个非常可行的办法是BIT套动态开点权值SegTree,但是它跑的实在太慢了. 然后由于这题并没有强制在线,所以我们可以使用整体二分来吊打树套树. 当然如果强制在线的话就 ...

  5. LUOGU P2617 Dynamic Rankings(树状数组套主席树)

    传送门 解题思路 动态区间第\(k\)大,树状数组套主席树模板.树状数组的每个位置的意思的是每棵主席树的根,维护的是一个前缀和.然后询问的时候\(log\)个点一起做前缀和,一起移动.时空复杂度\(O ...

  6. [luogu P2617] Dynamic Rankings 带修主席树

    带修改的主席树,其实这种,已经不能算作主席树了,因为这个没有维护可持久化的... 主席树直接带修改的话,由于这种数据结构是可持久化的,那么要相应改动,这个节点以后所有的主席树,这样单次修改,就达到n* ...

  7. P2617 Dynamic Rankings(树状数组套主席树)

    P2617 Dynamic Rankings 单点修改,区间查询第k大 当然是无脑树套树了~ 树状数组套主席树就好辣 #include<iostream> #include<cstd ...

  8. 2018.07.01洛谷P2617 Dynamic Rankings(带修主席树)

    P2617 Dynamic Rankings 题目描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i ...

  9. 洛谷P2617 Dynamic Rankings (主席树)

    洛谷P2617 Dynamic Rankings 题目描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a ...

随机推荐

  1. 如何设置C-Lodop打印控件的端口

    Lodop是一款功能强大的打印控件,在一些浏览器不再支持np插件之后,Lodop公司又推出了C-Lodop,C-Lodop是以服务的方式解决web打印,摆脱了对浏览器的依赖,支持了所有的浏览器. 该控 ...

  2. react双向事件的绑定

    双向绑定有三步,第一步,触发onChange事件,第二步,拿到input里的值,第三步,使用setState将拿到的值传回到state中. 如何拿到input里的值,可以有两种方法,第一种方法是参数e ...

  3. Create an Azure SQL database in the Azure portal

    Create a SQL database An Azure SQL database is created with a defined set of compute and storage res ...

  4. 洛谷 P1126 机器人搬重物

    题目描述 机器人移动学会(RMI)现在正尝试用机器人搬运物品.机器人的形状是一个直径 $1.6 米的球.在试验阶段,机器人被用于在一个储藏室中搬运货物.储藏室是一个 N×MN \times MN×M ...

  5. int,String转换

    int -> String 第一种方法:s=i+""; //会产生两个String对象 第二种方法:s=String.valueOf(i); //直接使用String类的静态 ...

  6. 洛谷P1916 小书童——蚂蚁大战

    题目背景 小A在你的帮助下,开始“刷题”,他在小书童里发现了一款叫“蚂蚁大战”(又称蛋糕保卫战)的游戏.(你懂得) 题目描述 游戏中会出现n只蚂蚁,分别有a1,a2……an的血量,它们要吃你的蛋糕.当 ...

  7. Django+Xadmin打造在线教育系统(七)

    全局导航&个人中心&全局搜索 配置全局导航 让index页面也继承base页面,注意首页有个单独的__index.js__ base页面的导航栏也进行配置 <nav> &l ...

  8. python3,打印一年的某一天是一年的第几天

    year = int(input('year:')) month = int(input('month:')) day = int(input('day:')) months = (0,31,59,9 ...

  9. python学习日记(join,range)

    join方法 join方法用于将序列里的字符串以指定的字符串连接成一个新的字符串 s = 'fasfw123' s1 = '-'.join(s) print(s1) str = '&ooooo ...

  10. [luogu1452]Beauty Contest【凸包+旋转卡壳】

    题目大意 求出平面最远点对距离的平方. 分析 此题我wa了好久,第一是凸包写错了,后面又是旋转卡壳写错了..自闭3s. 题解应该是旋转卡壳,但是有人用随机化乱搞过掉了Orz. 讲讲正解. 我们先求出所 ...