CodeForces12D 树状数组降维
http://codeforces.com/problemset/problem/12/D
题意
给N (N<=500000)个点,每个点有x,y,z ( 0<= x,y,z <=10^9 )
对于某点(x,y,z),若存在一点(x1,y1,z1)使得x1 > x && y1 > y && z1 > z 则点(x,y,z)是特殊点。
问N个点中,有多少个特殊点。
乍一看以为是裸的三位偏序问题,直接联想到了cdq分治,但是事实上这题和三位偏序有很大的差异,三位偏序问题求的是偏序的组数,但这题问的是完全被小于的个数,cdq分治上很难维护一个点是否已经被“超越”过,也不需要这么麻烦的去维护,事实上一维将x从大到小排序,一维作为树状数组上点的位置,越大的位置在越靠前,一维就是树状数组维护的前缀最大值即可。
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = 5e5 + ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,tmp,K,cnt;
int Hash[maxn];
struct Node{
int a,b,c;
}node[maxn];
bool cmp(Node a,Node b){
return a.a > b.a;
}
int tree[maxn];
void add(int x,int y){
for(;x <= cnt;x += x & -x) tree[x] = max(tree[x],y);
}
int getmax(int x){
int s = ;
for(;x > ;x -= x & -x) s = max(s,tree[x]);
return s;
}
int main()
{
Sca(N);
For(i,,N) scanf("%d",&node[i].a);
For(i,,N) scanf("%d",&node[i].b);
For(i,,N) scanf("%d",&node[i].c);
For(i,,N) Hash[i] = node[i].c;
sort(Hash + ,Hash + + N);
cnt = unique(Hash + ,Hash + + N) - Hash - ;
For(i,,N) node[i].c = cnt + - (lower_bound(Hash + ,Hash + + cnt,node[i].c) - Hash);
sort(node + ,node + + N,cmp);
int ans = ;
For(i,,N){
int j = i;
while(j <= N && node[i].a == node[j].a) j++;j--;
For(k,i,j){
int t = getmax(node[k].c - );
if(t > node[k].b) ans++;
}
For(k,i,j) add(node[k].c,node[k].b);
i = j;
}
Pri(ans);
#ifdef VSCode
system("pause");
#endif
return ;
}
CodeForces12D 树状数组降维的更多相关文章
- hdu1541树状数组(降维打击)
题目链接:http://icpc.njust.edu.cn/Problem/Hdu/1541/ 题意是:在二维图上有一系列坐标,其中坐标给出的顺序是:按照y升序排序,如果y值相同则按照x升序排序.这个 ...
- bzoj 3295 动态逆序对 (三维偏序,CDQ+树状数组)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3295 思路: 可以将这道题看成倒着插入,这样就可以转化成求逆序对数,用CDQ分治降维,正反用 ...
- HDU 4247 Pinball Game 3D(cdq 分治+树状数组+动态规划)
Pinball Game 3D Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 5618 Jam's problem again(三维偏序,CDQ分治,树状数组,线段树)
Jam's problem again Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
- BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]
1103: [POI2007]大都市meg Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2221 Solved: 1179[Submit][Sta ...
- bzoj1878--离线+树状数组
这题在线做很麻烦,所以我们选择离线. 首先预处理出数组next[i]表示i这个位置的颜色下一次出现的位置. 然后对与每种颜色第一次出现的位置x,将a[x]++. 将每个询问按左端点排序,再从左往右扫, ...
- codeforces 597C C. Subsequences(dp+树状数组)
题目链接: C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standar ...
- BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]
2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2545 Solved: 1419[Submit][Sta ...
- BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1399 Solved: 694[Submit][Status] ...
随机推荐
- Web API 如何请求基于Basic/Bearer 头的方式 C#
public void SetBasicAuthHeader(WebRequest request, String userName, String userPassword) { string au ...
- 洛谷-p2764(最小路径覆盖)(网络流24题)
#include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...
- Stack Pointer Tracker
在Intel 64与IA-32架构中,存在一类用于跳转到以及跳出程序段的指令:PUSH.POP.CALL.LEAVE与RET.这些指令可以在没有其余指令的干预下隐式地更新栈寄存器(ESP),维护栈内的 ...
- fpm 打包教程
常用yum命令: Yum安装时需要安装到指定的文件夹,则需要 --installroot yum install --installroot=/usr/src/ vim 常用rpm命令: 常用yum仓 ...
- 洛谷P2918 [USACO08NOV]买干草(一道完全背包模板题)
题目链接 很明显的一道完全背包板子题,做法也很简单,就是要注意 这里你可以买比所需多的干草,只要达到数量就行了 状态转移方程:dp[j]=min(dp[j],dp[j-m[i]]+c[i]) 代码如下 ...
- 前端 -- HTML内容
HTML介绍 Wed服务本质 import socket sk = socket.socket() sk.bind(("127.0.0.1", 8080)) sk.listen(5 ...
- Codeforces997D Cycles in product 【FFT】【树形DP】
题目大意: 给两个树,求环的个数. 题目分析: 出题人摆错题号系列. 通过画图很容易就能想到把新图拆在两个树上,在树上游走成环. 考虑DP状态F,G,T.F表示最终答案,T表示儿子不考虑父亲,G表示父 ...
- 爬虫_猫眼电影top100(正则表达式)
代码查看码云
- MT【294】函数定义的理解
已知函数$f(x)$的定义域为$D,\pi\in D$.若$f(x)$的图像绕坐标原点逆时针旋转$\dfrac{\pi}{3}$后与原图像重合,则$f(\pi)$不可能是( )A$\dfrac{ ...
- 微信小程序原生开发简介
简介: 总结: 1. 逻辑层使用js引擎,视图层使用webview渲染 2. 微信小程序已经支持了绝大部分的 ES6 API 3. 可以自动补全css的兼容语法 文档:https://develope ...