使用concurrent.futures模块中的线程池与进程池

线程池与进程池

以线程池举例,系统使用多线程方式运行时,会产生大量的线程创建与销毁,创建与销毁必定会带来一定的消耗,甚至导致系统资源的崩溃,这时使用线程池就是一个很好的解决方式。

“池”就说明了这里边维护了不止一个线程,线程池会提前创建好规定数量的线程,把需要使用多线程的任务提交给线程池,线程池会自己选择空闲的线程来执行提交的任务,任务完成后,线程并不会在池子中销毁,而是继续存在并等待完成下一个分配的任务。当线程池以满的时候,提交的线程会等待,也就是说线程池会有一个最大数量的运行线程限制。

进程池同样也是这个道理。

concurrent.futures模块为我们提供了ThreadPoolExecutor与ProcessPoolExecutor来使用线程进程池

ThreadPoolExecutor

下面是一个简单的例子

from concurrent.futures import ThreadPoolExecutor
import requests,time
url_list = ['https://www.cnblogs.com/', 'https://www.csdn.net/', 'https://github.com/']
def get_url(url):
content = requests.get(url).content.decode()
print(url+'已获取') pool = ThreadPoolExecutor(max_workers=3) start = time.time()
for url in url_list:
future = pool.submit(get_url,url)
# print(future)
end = time.time()
print(end-start)

输出的结果为:

0.0016434192657470703
https://www.cnblogs.com/已获取
https://www.csdn.net/已获取
https://github.com/已获取

例子中max_workers为指定线程个数,pool.submit为提交任务到线程执行,get_url为方法,url为参数

并且通过输出顺序可以看到线程池的执行并不会阻塞主线程的运行

print(future)被打了注释,现在我们取消注释运行一下:

Future at 0x7ff6cfaa8860 state=running
Future at 0x7ff6ce965860 state=running
Future at 0x7ff6ce96e278 state=running
0.006175518035888672
https://www.cnblogs.com/已获取
https://www.csdn.net/已获取
https://github.com/已获取

每提交一个任务后都会返回一个future对象,通过它可以查看任务运行的状态,state=running表示正在运行

future对象还有许多方法:

future.done()

from concurrent.futures import ThreadPoolExecutor
import requests,time
url_list = ['https://www.cnblogs.com/', 'https://www.csdn.net/', 'https://github.com/']
def get_url(url):
content = requests.get(url).content.decode()
print(url+'已获取') pool = ThreadPoolExecutor(max_workers=3)
future_list = []
start = time.time()
for url in url_list:
future = pool.submit(get_url,url)
print(future.done())
future_list.append(future)
end = time.time() print(end-start)
time.sleep(5)
for future in future_list:
print(future.done())

这里添加了future_list,为了显示效果中间添加sleep,最后结果为:

False
False
False
0.001546621322631836
https://www.cnblogs.com/已获取
https://www.csdn.net/已获取
https://github.com/已获取
True
True
True

future.done()可以显示当前允许状态

future.result()

from concurrent.futures import ThreadPoolExecutor
import requests,time
url_list = ['https://www.cnblogs.com/', 'https://www.csdn.net/', 'https://github.com/']
def get_url(url):
content = requests.get(url).content.decode()
print(url+'已获取')
return url pool = ThreadPoolExecutor(max_workers=3)
future_list = []
start = time.time()
for url in url_list:
future = pool.submit(get_url,url)
print(future.result())
future_list.append(future)
end = time.time() print(end-start)
for future in future_list:
print(future.result())

结果为:

https://www.cnblogs.com/已获取
https://www.cnblogs.com/
https://www.csdn.net/已获取
https://www.csdn.net/
https://github.com/已获取
https://github.com/
2.0975613594055176
https://www.cnblogs.com/
https://www.csdn.net/
https://github.com/

可见result()方法可以得到任务的返回值,但会阻塞,因为不运行完怎么会得到返回值呢?

除此之外还有很多方法:

使用map方法

from concurrent.futures import ThreadPoolExecutor
import requests,time
url_list = ['https://www.cnblogs.com/', 'https://www.csdn.net/', 'https://github.com/']
def get_url(url):
content = requests.get(url).content.decode()
print(url+'已获取')
return url pool = ThreadPoolExecutor(max_workers=3) pool.map(get_url,url_list)

与内建函数用法类似

使用wait方法

from concurrent.futures import ThreadPoolExecutor,wait
import requests,time
url_list = ['https://www.cnblogs.com/', 'https://www.csdn.net/', 'https://github.com/']
def get_url(url):
content = requests.get(url).content.decode()
print(url+'已获取')
return url pool = ThreadPoolExecutor(max_workers=3)
future_list = []
start = time.time()
for url in url_list:
future = pool.submit(get_url,url)
future_list.append(future) print(wait(future_list))
end = time.time()
print(end-start)

https://www.cnblogs.com/已获取
https://www.csdn.net/已获取
https://github.com/已获取
DoneAndNotDoneFutures(done={Future at 0x7f7506447da0 state=finished returned str, Future at 0x7f75074c9828 state=finished returned str, Future at 0x7f75064477f0 state=finished returned str}, not_done=set())

6.678021430969238

wait返回值是一个元组,元组里是已完成和未完成的两个集合,它的return_when参数接受3个选项FIRST_COMPLETED, FIRST_EXCEPTION 和ALL_COMPLETE,默认是ALL_COMPLETE,意味着所有都完成,FIRST_COMPLETED意味着有一个完成了就可以了, FIRST_EXCEPTION是第一个出现异常就会停止wait

例如:

from concurrent.futures import ThreadPoolExecutor,wait
import requests,time
url_list = ['https://www.cnblogs.com/', 'https://www.csdn.net/', 'https://github.com/']
def get_url(url):
content = requests.get(url).content.decode()
print(url+'已获取')
return url def error(url):
gg pool = ThreadPoolExecutor(max_workers=4)
future_list = []
start = time.time()
future_list.append(pool.submit(error,'https://www.cnblogs.com/'))
for url in url_list:
future = pool.submit(get_url,url)
future_list.append(future) print(wait(future_list,return_when='FIRST_EXCEPTION'))
end = time.time()
print(end-start)

DoneAndNotDoneFutures(done={Future at 0x7fd1a5b95320 state=finished raised NameError}, not_done={Future at 0x7fd1a4b11a90 state=running, Future at 0x7fd1a4b11a20 state=running, Future at 0x7fd1a4c897f0 state=running})
0.001996755599975586
https://www.cnblogs.com/已获取
https://www.csdn.net/已获取
https://github.com/已获取

ProcessPoolExecutor

进程池与线程池的使用方式基本相同,套用即可

使用concurrent.futures模块中的线程池与进程池的更多相关文章

  1. concurrent.futures模块(进程池&线程池)

    1.线程池的概念 由于python中的GIL导致每个进程一次只能运行一个线程,在I/O密集型的操作中可以开启多线程,但是在使用多线程处理任务时候,不是线程越多越好,因为在线程切换的时候,需要切换上下文 ...

  2. 线程与进程 concurrent.futures模块

    https://docs.python.org/3/library/concurrent.futures.html 17.4.1 Executor Objects class concurrent.f ...

  3. 线程池、进程池(concurrent.futures模块)和协程

    一.线程池 1.concurrent.futures模块 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 Pro ...

  4. concurrent.futures模块(进程池/线程池)

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  5. Python并发编程之线程池/进程池--concurrent.futures模块

    一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/ ...

  6. python3 线程池-threadpool模块与concurrent.futures模块

    多种方法实现 python 线程池 一. 既然多线程可以缩短程序运行时间,那么,是不是线程数量越多越好呢? 显然,并不是,每一个线程的从生成到消亡也是需要时间和资源的,太多的线程会占用过多的系统资源( ...

  7. 《转载》Python并发编程之线程池/进程池--concurrent.futures模块

    本文转载自Python并发编程之线程池/进程池--concurrent.futures模块 一.关于concurrent.futures模块 Python标准库为我们提供了threading和mult ...

  8. 使用concurrent.futures模块并发,实现进程池、线程池

    Python标准库为我们提供了threading和multiprocessing模块编写相应的异步多线程/多进程代码 从Python3.2开始,标准库为我们提供了concurrent.futures模 ...

  9. Python之路(第四十六篇)多种方法实现python线程池(threadpool模块\multiprocessing.dummy模块\concurrent.futures模块)

    一.线程池 很久(python2.6)之前python没有官方的线程池模块,只有第三方的threadpool模块, 之后再python2.6加入了multiprocessing.dummy 作为可以使 ...

随机推荐

  1. input的三个属性autocomplete、autocapitalize和autocorrect

    下面的input的三个属性是H5新增的属性 <input type="text" class="input-search" placeholder=&qu ...

  2. Go基础系列:nil channel用法示例

    Go channel系列: channel入门 为select设置超时时间 nil channel用法示例 双层channel用法示例 指定goroutine的执行顺序 当未为channel分配内存时 ...

  3. PAT之气死人不偿命的3n+1猜想

    卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数 ...

  4. [转]docker基础详解

    本文转自:https://blog.csdn.net/xsj_blog/article/details/71700032 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog ...

  5. .NET-ORM框架EF-Code First代码优先

    前言 Code First顾名思义,通告代码创建实体与数据库.示例中我们会创建表,分表是Studen,Teacher. Code First实战示例 打开VS2013,创建一个项目我这里是用的MVC框 ...

  6. C#基础知识总结(三)

    摘要 关系表达式.逻辑表达式.分支结构的总结:if-else.if-else if-else.switch-case一.关系运算符 >,==,<… 关系表达式的结果是bool类型,true ...

  7. 通过批处理进行Windows服务的安装/卸载&启动/停止

    安装服务 @echo off set checked=2 set PATHS=%~sdp0 echo 按任意键执行安装……? pause>nul if %checked% EQU 2 ( %PA ...

  8. 解决MyEclipse中install new software问题

    eclipse中点击help可以直接找到install new software选项进行安装插件,但是在Myeclipse中help没有这个选项,如下提供几种解决方法 Windows-preferen ...

  9. 易宝支付Demo,生产中封装成简洁的代付接口,不用request如何获取项目运行时的真实路径

    最近项目在做融360引流,涉及到了易宝支付的代扣和代付.易宝官方给出的demo只能简单运行,而且都是通过form表单的形式提交,返回XML格式.同时接口代码都写在了JSP中看起来不友好.项目在生成中想 ...

  10. JavaScript字符串转换为数字

    今天在工作中碰到了一个问题,要将字符串转换为数字,否则函数不能正常工作, 特地研究了下,写了2个函数,供大家参考,代码如下: /** * 将字符串转换为数字 * @param {Object} str ...