Learning to Rank for IR的评价指标—MAP,NDCG,MRR
转自: https://www.cnblogs.com/eyeszjwang/articles/2368087.html
MAP(Mean Average Precision):单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值。主集合的平均准确率(MAP)是每个主题的平均准确率的平均值。MAP 是反映系统在全部相关文档上性能的单值指标。系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高。如果系统没有返回相关文档,则准确率默认为0。
例如:假设有两个主题,主题1有4个相关网页,主题2有5个相关网页。某系统对于主题1检索出4个相关网页,其rank分别为1, 2, 4, 7;对于主题2检索出3个相关网页,其rank分别为1,3,5。对于主题1,平均准确率为(1/1+2/2+3/4+4/7)/4=0.83。对于主题2,平均准确率为(1/1+2/3+3/5+0+0)/5=0.45。则MAP= (0.83+0.45)/2=0.64。”
NDCG(Normalized Discounted Cumulative Gain):计算相对复杂。对于排在结位置n处的NDCG的计算公式如下图所示:
在MAP中,四个文档和query要么相关,要么不相关,也就是相关度非0即1。NDCG中改进了下,相关度分成从0到r的r+1的等级(r可设定)。当取r=5时,等级设定如下图所示:
例如现在有一个query={abc},返回下图左列的Ranked List(URL),当假设用户的选择与排序结果无关(即每一级都等概率被选中),则生成的累计增益值如下图最右列所示:
[每条url样本的gain是样本已经定义好的]
考虑到一般情况下用户会优先点选排在前面的搜索结果,所以应该引入一个折算因子(discounting factor): log(2)/log(1+rank)。这时将获得DCG值(Discounted Cumulative Gain)如下如所示:
最后,为了使不同等级上的搜索结果的得分值容易比较,需要将DCG值归一化的到NDCG值。操作如下图所示,首先计算理想返回结果List的DCG值:
然后用DCG/MaxDCG就得到NDCG值,如下图所示:
MRR(Mean Reciprocal Rank):是把标准答案在被评价系统给出结果中的排序取倒数作为它的准确度,再对所有的问题取平均。相对简单,举个例子:有3个query如下图所示:
可计算这个系统的MRR值为:(1/3 + 1/2 + 1)/3 = 11/18=0.61。
Learning to Rank for IR的评价指标—MAP,NDCG,MRR的更多相关文章
- (转)Learning to Rank for IR的评价指标—MAP,NDCG,MRR
转自:http://www.cnblogs.com/eyeszjwang/articles/2368087.html MAP(Mean Average Precision):单个主题的平均准确率是每篇 ...
- IR的评价指标—MAP,NDCG,MRR
http://www.cnblogs.com/eyeszjwang/articles/2368087.html MAP(Mean Average Precision):单个主题的平均准确率是每篇相关文 ...
- IR的评价指标-MAP,NDCG和MRR
IR的评价指标-MAP,NDCG和MRR MAP(Mean Average Precision): 单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值.主集合的平均准确率(MAP)是每个主 ...
- Learning to Rank算法介绍:RankSVM 和 IR SVM
之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...
- [Machine Learning] Learning to rank算法简介
声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要 ...
- Learning To Rank之LambdaMART前世今生
1. 前言 我们知道排序在非常多应用场景中属于一个非常核心的模块.最直接的应用就是搜索引擎.当用户提交一个query.搜索引擎会召回非常多文档,然后依据文档与query以及用户的相关程度对 ...
- [笔记]Learning to Rank算法介绍:RankNet,LambdaRank,LambdaMart
之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...
- 芝麻HTTP: Learning to Rank概述
Learning to Rank,即排序学习,简称为 L2R,它是构建排序模型的机器学习方法,在信息检索.自然语言处理.数据挖掘等场景中具有重要的作用.其达到的效果是:给定一组文档,对任意查询请求给出 ...
- Learning to Rank算法介绍:RankNet,LambdaRank,LambdaMart
之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...
随机推荐
- RabbitMq 6种使用模式
RabbitMQ的5种模式与实例 1.1 简单模式Hello World 功能:一个生产者P发送消息到队列Q,一个消费者C接收 生产者实现思路: 创建连接工厂ConnectionFactory,设置服 ...
- Java8之lambda表达式
一.什么是lambda表达式? Lambda 是一个匿名函数,我们可以把 Lambda 表达式理解为是一段可以传递的代码(将代码像数据一样进行传递).可以写出更简洁.更灵活的代码.作为一种更紧凑的代码 ...
- [03] 线程同步 synchronized
1.线程同步概述 线程之间有可能共享一些资源,比如内存.文件.数据库等.多个线程同时读写同一份共享资源时,就可能引起冲突,所以引入了线程的"同步"机制. 所谓同步,就是说线程要有先 ...
- SpringBoot整合Mybatis使用注解或XML的方式开发
2018-6-4 补充mybatis-spring-boot注解的使用 1.导包 只需要再导入mysql+mybatis两个包 <dependency> <groupId>or ...
- MiniProfiler安装使用心得
MiniProfiler简介: MVC MiniProfiler是Stack Overflow团队设计的一款对ASP.NET MVC的性能分析的小程序.可以对一个页面本身,及该页面通过直接引用.Aja ...
- 并发连接MySQL
先吐槽一下libmysqlclientAPI的设计, 多个线程同时去connect居然会core掉. 后来Google了一番, 才发现mysql_real_connect不是线程安全的, 需要一些额外 ...
- Python全栈开发之路 【第五篇】:Python基础之函数进阶(装饰器、生成器&迭代器)
本节内容 一.名称空间 又名name space,就是存放名字的地方.举例说明,若变量x=1,1存放于内存中,那名字x存放在哪里呢?名称空间正是存放名字x与1绑定关系的地方. 名称空间共3种,分别如下 ...
- itoa()函数和atoi()函数详解
C语言提供了几个标准库函数,可以将任意类型(整型.长整型.浮点型等)的数字转换为字符串. 以下是用itoa()函数将整数转换为字符串的一个例子:# include <stdio.h># i ...
- c++入门之浅拷贝和深拷贝
关于这方面的知识:见一篇精辟博文:https://blog.csdn.net/feitianxuxue/article/details/9275979
- 用python实现一个回文数
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...