BZOJ3438小M的作物——最小割
题目描述
输入
输出
只有一行,包括一个整数,表示最大收益
样例输入
4 2 1
2 3 2
1
2 3 2 1 2
样例输出
样例解释A耕地种1,2,B耕地种3,收益4+2+3+2=11。
1<=k< n<= 1000,0 < m < = 1000 保证所有数据及结果不超过2*10^9。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
#define ll long long
using namespace std;
int head[4000];
int to[4000000];
int next[4000000];
int val[4000000];
int d[4000];
int q[4000];
int back[4000];
int S,T;
int x,y,k;
int n,m;
int tot=1;
int ans;
void add(int x,int y,int v)
{
tot++;
next[tot]=back[x];
back[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=back[y];
back[y]=tot;
to[tot]=x;
val[tot]=0;
}
bool bfs(int S,int T)
{
int r=0;
int l=0;
memset(d,-1,sizeof(d));
q[r++]=T;
d[T]=2;
while(l<r)
{
int now=q[l];
for(int i=back[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i^1]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
if(d[S]==-1)
{
return false;
}
else
{
return true;
}
}
int dfs(int x,int flow)
{
if(x==T)
{
return flow;
}
int now_flow;
int used=0;
for(int &i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]-1&&val[i]!=0)
{
now_flow=dfs(to[i],min(flow-used,val[i]));
val[i]-=now_flow;
val[i^1]+=now_flow;
used+=now_flow;
if(now_flow==flow)
{
return flow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
int dinic()
{
int res=0;
while(bfs(S,T))
{
memcpy(head,back,sizeof(back));
res+=dfs(S,0x3f3f3f3f);
}
return res;
}
int main()
{
scanf("%d",&n);
S=n+1;
T=n+2;
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
add(S,i,x);
ans+=x;
}
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
add(i,T,x);
ans+=x;
}
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&k,&x,&y);
add(S,n+2+i,x);
ans+=x;
add(n+2+i+m,T,y);
ans+=y;
for(int j=1;j<=k;j++)
{
scanf("%d",&x);
add(n+2+i,x,INF);
add(x,n+2+i+m,INF);
}
}
printf("%d",ans-dinic());
}
BZOJ3438小M的作物——最小割的更多相关文章
- 【BZOJ3438】小M的作物 最小割
[BZOJ3438]小M的作物 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子 有1个(就是可以种一棵作物)(用1. ...
- 【BZOJ-3438】小M的作物 最小割 + 最大权闭合图
3438: 小M的作物 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 825 Solved: 368[Submit][Status][Discuss ...
- BZOJ 3438: 小M的作物( 最小割 )
orz出题人云神... 放上官方题解... 转成最小割然后建图跑最大流就行了... ---------------------------------------------------------- ...
- 3438: 小M的作物[最小割]
3438: 小M的作物 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1073 Solved: 465[Submit][Status][Discus ...
- P1361 小M的作物 最小割理解
如果没有组合效益的存在 我们直接每个点两部分的最大值即可 换成网络流模型来看 即把S点看作是A田 把T点看作是B田 每种作物看作一个点 分别连边(S,i,A[i]) (i,T,B[i]) 最后图中所有 ...
- 洛谷 - P1361 - 小M的作物 - 最小割 - 最大权闭合子图
第一次做最小割,不是很理解. https://www.luogu.org/problemnew/show/P1361 要把东西分进两类里,好像可以应用最小割的模板,其中一类A作为源点,另一类B作为汇点 ...
- [P1361] 小M的作物 - 最小割
没想到今天早上的第一题网络流就血了这么多发 从经典的二选一问题上魔改 仍然考虑最小割 #include <bits/stdc++.h> using namespace std; #defi ...
- 小M的作物 最小割最大流
题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子有1个(就是可以种一棵作物)(用1...n编号). 现在,第i种作物种植在A中种植可 ...
- BZOJ3438 小M的作物(最小割)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...
随机推荐
- 【原创】研发应该懂的binlog知识(上)
引言 为什么写这篇文章? 大家当年在学MySQL的时候,为了能够迅速就业,一般是学习一下MySQL的基本语法,差不多就出山找工作了.水平稍微好一点的童鞋呢还会懂一点存储过程的编写,又或者是懂一点索引的 ...
- ML.NET 示例:多类分类之鸢尾花分类
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...
- C#中存储数据的集合:数组、集合、泛型、字典
为什么把这4个东西放在一起来说,因为c#中的这4个对象都是用来存储数据的集合……. 首先咱们把这4个对象都声明并实例化一下: //数组 ]; //集合 ArrayList m_AList = new ...
- 基于HTTP可供浏览器调用的本地打印程序
之前给公司做打印都是用ActiveX控件,只支持IE浏览器,最近需要支持谷歌,又不想去学谷歌插件编写,于是就用本地启动一个http服务器来供浏览器调用(写成windows服务更好),同事用了都说好(笑 ...
- ASP.NET项目开发
ASP.NET项目开发 1.C/S模式 (client 客户端 server 服务器):QQ.证券.酷狗.旺旺...需要下载响应软件: 工作原理:客户端请求--ASP.net服务器端应用(<-- ...
- 容器化-Docker实战
导读:本文系统性介绍Docker安装.Docker组件.Docker命令.Dockerfile语法和Docker应用,通过上述介绍使我们已经对docker基本操作有一定了解. 一.前言 本文将系统性的 ...
- 《梦断代码》Scott Rosenberg著(三)
开放与封闭之论: 程序源代码是商业软件公司最重要的资产,所以软件公司售卖二进制文件.这样也就意味着如果微软的软件产品出了问题,即便你是一个程序大牛也无法修复它.你只能等着微软来修正问题,因为只有微软程 ...
- scrapy之五大核心组件
scrapy之五大核心组件 scrapy一共有五大核心组件,分别为引擎.下载器.调度器.spider(爬虫文件).管道. 爬虫文件的作用: a. 解析数据 b. 发请求 调度器: a. 队列 队列是一 ...
- ocrosoft 程序设计提高期末复习问题M 递归求猴子吃桃
http://acm.ocrosoft.com/problem.php?cid=1172&pid=12 题目描述 猴子吃桃问题.猴子第1天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个. ...
- 简述nginx(1)
Nginx能做什么 1.反向代理 2.负载均衡 3.HTTP服务器(包含动静分离) 4.正向代理 反向代理 反向代理应该是Nginx做的最多的一件事了,什么是反向代理呢,以下是百度百科的说法:反向代理 ...