题目分析:

不难注意到仙人掌边可以删掉。在森林中考虑树形DP。

题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数。

接着将所有的边接到当前点,然后每两个方案可以任意拼接。然后考虑引一条边上去的情况,选一个点不与周围连边就行了。

判仙人掌利用dfs树与树前缀和即可。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ;
const int mod = ; int T,n,m,arr[maxn],C[maxn],d[maxn],up[maxn],dep[maxn];
int f[maxn],gi[maxn]; struct edge{int u,v,flag;}edges[maxn]; vector <pair<int,int> > g[maxn];
vector <int> nxt[maxn]; void read(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
nxt[i].clear(),g[i].clear(),arr[i] = ,d[i]=,dep[i]=,up[i]=;
f[i] = ;gi[i] = ;
}
for(int i=;i<=m;i++){
scanf("%d%d",&edges[i].u,&edges[i].v);
g[edges[i].u].push_back(make_pair(edges[i].v,i));
g[edges[i].v].push_back(make_pair(edges[i].u,i));
edges[i].flag = ;
}
} void DFST(int now,int dp){
dep[now] = dp;
for(auto it:g[now]){
if(!dep[it.first]) {
up[it.first] = it.second; nxt[now].push_back(it.first);
DFST(it.first,dp+);
}
else if(dep[it.first] < dep[now]) continue;
else d[it.first]++,d[now]--,edges[it.second].flag = ;
}
} void dfsup(int now){for(auto it:nxt[now]) dfsup(it),d[now] += d[it];} int cactus(){
DFST(,); dfsup();
for(int i=;i<=n;i++) if(d[i] > ) return ;
for(int i=;i<=n;i++) if(d[i] == ) edges[up[i]].flag = ;
return ;
} void dfs(int now,int fa){
arr[now] = ;int multi = ,cnt = ;
for(auto it:nxt[now]){
if(it == fa) continue;
cnt++;dfs(it,now);
multi = (1ll*multi*gi[it])%mod;
}
if(!cnt) f[now] = gi[now] = ;
else{
f[now] = (1ll*multi*C[cnt])%mod;
gi[now] = f[now] + ((1ll*multi*C[cnt-])%mod)*cnt%mod;
gi[now] %= mod;
}
} void work(){
if(!cactus()) {puts("");return;}
for(int i=;i<=n;i++) nxt[i].clear();
for(int i=;i<=m;i++)
if(!edges[i].flag){
nxt[edges[i].u].push_back(edges[i].v);
nxt[edges[i].v].push_back(edges[i].u);
}
int ans = ;
for(int i=;i<=n;i++) if(!arr[i]) {dfs(i,); ans = (1ll*ans*f[i])%mod;}
printf("%d\n",ans);
} int main(){
scanf("%d",&T);
C[] = C[] = ;
for(int i=;i<=;i++) C[i] = (C[i-] + (1ll*(i-)*C[i-])%mod)%mod;
while(T--){
read();
work();
}
return ;
}

LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】的更多相关文章

  1. BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)

    首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...

  2. [BZOJ4784][ZJOI2017]仙人掌(树形DP)

    4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status] ...

  3. 【BZOJ-1040】骑士 树形DP + 环套树 + DFS

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3312  Solved: 1269[Submit][Status ...

  4. HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca

    Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...

  5. HDU 4514 - 湫湫系列故事——设计风景线 - [并查集判无向图环][树形DP求树的直径]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4514 Time Limit: 6000/3000 MS (Java/Others) Memory Li ...

  6. 浅谈关于树形dp求树的直径问题

    在一个有n个节点,n-1条无向边的无向图中,求图中最远两个节点的距离,那么将这个图看做一棵无根树,要求的即是树的直径. 求树的直径主要有两种方法:树形dp和两次bfs/dfs,因为我太菜了不会写后者这 ...

  7. 树形DP 学习笔记(树形DP、树的直径、树的重心)

    前言:寒假讲过树形DP,这次再复习一下. -------------- 基本的树形DP 实现形式 树形DP的主要实现形式是$dfs$.这是因为树的特殊结构决定的——只有确定了儿子,才能决定父亲.划分阶 ...

  8. 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)

    传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi​表示把iii为根的子树加边形成仙人掌的方案数. ...

  9. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

随机推荐

  1. 《Spring Boot 入门及前后端分离项目实践》目录

    开篇词:SpringBoot入门及前后端分离项目实践导读 第02课:快速认识 Spring Boot 技术栈 第03课:开发环境搭建 第04课:快速构建 Spring Boot 应用 第05课:Spr ...

  2. navicat 和 pymysql

    ---------------------------------------------------相信时间的力量,单每月经过努力的时间,一切的安排都是懊脑的安排. # # ------------ ...

  3. python爬虫随笔-scrapy框架(1)——scrapy框架的安装和结构介绍

    scrapy框架简介 Scrapy,Python开发的一个快速.高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据.Scrapy用途广泛,可以用于数据挖掘.监测和自动化测试 ...

  4. 我的微信小程序第三篇(app.json)

    前言 端午节回家了,所以好多天没有更新,只想说还是待在家里舒服呀,妈妈各种做好吃的,小侄子侄女各种粘着我在室外玩,导致我三天下来不仅胖了一圈,还黑了一圈,上班第一天有同事就说我晒黑了,哭~~~,为了防 ...

  5. win8.1系统下安装ubuntu实现双系统实践教程

    寒假闲来无事,一程序猿哥们给发了一个linux的shell编程指南,看了几张感觉不错.于是装一个试试. 没想到一装才知道了那么的问题. 下面开始: step 1: 软件准备:Ubuntu 系统镜像,这 ...

  6. 关于对于system函数和c++标准下的新的变量定义方式{}

  7. haoop笔记

    : //:什么是hadoop? hadoop是解决大数据问题的一整套技术方案 :hadoop的组成? 核心框架 分布式文件系统 分布式计算框架 分布式资源分配框架 hadoop对象存储 机器计算 :h ...

  8. Python之自测代码标识__name__=='__main__'

    __name__是python的默认的自测代码标识,其他文件导入该python文件时,不会执行这行代码以下部分. def yangfan(a): print('yangfan %s' %a) prin ...

  9. 【Python3练习题 020】 求1+2!+3!+...+20!的和

    方法一 import functools   sum = 0 for i in range(1,21):     sum = sum + functools.reduce(lambda x,y: x* ...

  10. React Native之倒计时组件的实现(ios android)

    React Native之倒计时组件的实现(ios android) 一,需求分析 1,app需实现类似于淘宝的活动倒计时,并在倒计时结束时,活动也结束. 2,实现订单倒计时,并在倒计时结束时,订单关 ...