洛谷题目传送门

这题推式子恶心。。。。。

考虑分治,每次统计跨过\(mid\)的所有区间的答案和。\(i\)从\(mid-1\)到\(l\)枚举,统计以\(i\)为左端点的所有区间。

我们先维护好\([i,mid]\)区间内最小值\(mn\)和最大值\(mx\)。我们可以想到,对于某一个左端点,它的右端点\(j\)在一定的范围内,最小值和最大值都不会变。这里就看到一些可以重复利用并快速计算的信息了。

维护两个指针\(p,q\),分别表示\([mid+1,r]\)内元素值第一个小于\(mn/\)大于\(mx\)的位置,那么\(\sum\limits_{j=mid+1}^rans[i,j]\)就可以分成三类讨论。暂时假设\(p<q\)。

\(j\in[mid+1,p-1]\)时,区间的最值不变,都是\(mn,mx\),直接高斯求和

\[ans\leftarrow mn\cdot mx\sum\limits_{j=mid+1}^{p-1}j-i+1
\]

\(j\in[p,q-1]\)时,区间最大值不变,但最小值取的是\([mid+1,j]\)里的了。预处理\(mid+1\)到\(r\)的前缀最小值\(min_j\),同时记录\(min_j\)和\(min_j\cdot j\)的前缀和(\(p\ge q\)同理)

\[ans\leftarrow mx\sum\limits_{j=p}^{q-1}min_j(j-i+1)
\]

\[ans\leftarrow mx\sum\limits_{j=p}^{q-1}min_j\cdot j+mx(1-i)\sum\limits_{j=p}^{q-1}min_j
\]

\(j\in[q,r]\)时,最值和\(mn,mx\)无关了,记录\(min_jmax_j\)和\(min_jmax_j\cdot j\)的前缀和

\[ans\leftarrow \sum\limits_{j=q}^rmin_jmax_j(j-i+1)
\]

\[ans\leftarrow \sum\limits_{j=q}^rmin_jmax_j\cdot j+(1-i)\sum\limits_{j=q}^rmin_jmax_j
\]

容易发现\(mn,mx,p,q\)都是单调移动的,那么就大功告成啦!

#include<bits/stdc++.h>
#define LL long long
#define RG register
#define R RG LL//常数大也无所谓了
#define G if(++ip==ie)fread(ip=buf,1,N,stdin)
#define A(V) (ans+=V)%=YL
using namespace std;
const LL N=1<<19,YL=1e9;
char buf[N],*ie=buf+N,*ip=ie-1;
LL ans,a[N],mns[N],mxs[N],mnj[N],mxj[N],mms[N],mmj[N];
inline LL in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
inline LL S(R l,R r){//高斯求和
return (l+r)*(r-l+1)/2%YL;
}
void solve(R l,R r){
if(l==r){A(a[l]*a[l]);return;}
R m=(l+r)>>1,i,j,p,q,mn=YL,mx=0;
solve(l,m);solve(m+1,r);
mns[m]=mxs[m]=mnj[m]=mxj[m]=mms[m]=mmj[m]=0;
for(j=m+1;j<=r;++j){//预处理,变量名不解释
mn=min(mn,a[j]);mx=max(mx,a[j]);
mns[j]=(mns[j-1]+mn)%YL;
mxs[j]=(mxs[j-1]+mx)%YL;
mnj[j]=(mnj[j-1]+mn*j)%YL;
mxj[j]=(mxj[j-1]+mx*j)%YL;
mms[j]=(mms[j-1]+mn*mx)%YL;
mmj[j]=(mmj[j-1]+mn*mx%YL*j)%YL;
}
mn=YL;mx=0;
for(p=q=m+1,i=m;i>=l;--i){//计算答案
mn=min(mn,a[i]);mx=max(mx,a[i]);
while(p<=r&&mn<a[p])++p;//单调移动
while(q<=r&&mx>a[q])++q;
if(p<q){
A(mn*mx%YL*S(m-i+2,p-i));//注意做减法的都要加一下模数
A(mx*(mnj[q-1]-mnj[p-1]+YL)+mx*(mns[q-1]-mns[p-1]+YL)%YL*(1-i+YL));
A(mmj[r]-mmj[q-1]+(mms[r]-mms[q-1]+YL)*(1-i+YL));
}
else{
A(mn*mx%YL*S(m-i+2,q-i));
A(mn*(mxj[p-1]-mxj[q-1]+YL)+mn*(mxs[p-1]-mxs[q-1]+YL)%YL*(1-i+YL));
A(mmj[r]-mmj[p-1]+(mms[r]-mms[p-1]+YL)*(1-i+YL));
}
}
}
int main(){
R n=in();
for(R i=1;i<=n;++i)a[i]=in();
solve(1,n);
printf("%lld\n",ans);
return 0;
}

洛谷SP22343 NORMA2 - Norma(分治,前缀和)的更多相关文章

  1. BZOJ3745 / SP22343 NORMA2 - Norma 分治,CDQ分治

    要命的题目. 写法:分类讨论进行计算. 枚举过每一个\(mid\)的所有区间.对于左端点\(i∈[l, mid - 1]\),向左推并计算\([l,mid]\)范围内的最大\(/\)最小值. 然后右端 ...

  2. 洛谷P3810 陌上花开 CDQ分治(三维偏序)

    好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...

  3. [洛谷P3806] [模板] 点分治1

    洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...

  4. 洛谷P4390 Mokia CDQ分治

    喜闻乐见的CDQ分治被我搞的又WA又T..... 大致思路是这样的:把询问用二维前缀和的思想拆成4个子询问.然后施CDQ大法即可. 我却灵光一闪:树状数组是可以求区间和的,那么我们只拆成两个子询问不就 ...

  5. Solution -「COCI 2014-2015 #2」「洛谷 P6406」Norma

    \(\mathcal{Description}\)   Link.   给定 \(\{a_n\}\),求: \[\sum_{i=1}^n\sum_{j=i}^n(j-i+1)\min_{k=i}^j\ ...

  6. 洛谷P4178 Tree (点分治)

    题目描述 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K 输入输出格式 输入格式:   N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下 ...

  7. 洛谷P2280 [HNOI2003] 激光炸弹 [前缀和]

    题目传送门 题目描述 输入输出格式 输入格式: 输入文件名为input.txt 输入文件的第一行为正整数n和正整数R,接下来的n行每行有3个正整数,分别表示 xi,yi ,vi . 输出格式: 输出文 ...

  8. 洛谷 4178 Tree——点分治

    题目:https://www.luogu.org/problemnew/show/P4178 点分治.如果把每次的 dis 和 K-dis 都离散化,用树状数组找,是O(n*logn*logn),会T ...

  9. 洛谷T44252 线索_分治线段树_思维题

    分治线段树,其实就是将标记永久化,到最后再统一下传所有标记. 至于先后顺序,可以给每个节点开一个时间戳. 一般地,分治线段树用于离线,只查询一次答案的题目. 本题中,标记要被下传 222 次. Cod ...

随机推荐

  1. Codeforces Round #533 (Div. 2) A. Salem and Sticks(暴力)

    A. Salem and Sticks time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. Atcoder E - Knapsack 2 (01背包进阶版 ex )

    E - Knapsack 2 Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement The ...

  3. scrapy框架爬取妹子图片

    首先,建立一个项目#可在github账户下载完整代码:https://github.com/connordb/scrapy-jiandan2 scrapy startproject jiandan2 ...

  4. Maven安装与环境配置(Windows)

    1.下载安装包 在Maven官网下载最新版的安装包:http://maven.apache.org/download.cgi 2.解压安装包 3.配置Maven环境变量 配置M2_HOME环境变量,指 ...

  5. PHP 高并发秒杀解决方案

    本文提供 PHP 高并发秒杀解决方案(附加三个案例说明(普通流程,使用文件锁,使用redis消息队列)) 1:(正常流程,不做任何高并发处理),代码如下: <?php $_mysqli = ne ...

  6. Freemarker 页面静态化技术使用入门案例

    在访问 新闻.活动.商品 详情页面时, 路径可以是 xx[id].html, 服务器端根据请求 id, 动态生成 html 网页,下次访问数据时,无需再查询数据,直接将 html 静态页面返回.这样一 ...

  7. 解决ERROR 1130: Host '192.168.11.1' is not allowed to connect to this MySQL

    使用navicat进行远程登录MySQL时,报出 ERROR 1130: Host '192.168.11.1' is not allowed to connect to this MySQL  se ...

  8. python之路--面向对象-成员

    一 . 成员 在类中你能写的所有内容都是类的成员 class 类名: # 方法 def__init__(self, 参数1, 参数2...): # 属性变量 self.属性1 = 参数1 self.属 ...

  9. echo "" > 和 echo "" >> 的区别

    在写shell脚本中,如果判断一个文件已经存在,但希望重写这个文件,一般用如下方式 echo "" > file.txt 这个表示清空文件的内容,如果使用 echo “” & ...

  10. ReCAPTCHA & 手势验证

    手势验证 recaptcha https://www.vaptcha.com/ https://www.vaptcha.com/document https://www.iviewui.com/com ...