AtCoder Regular Contest 102 (ARC102) D All Your Paths are Different Lengths 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/ARC102D.html
题目传送门 - ARC102D
题意
给定 $L$,请你构造一个节点个数为 $n$ ,边数为 $m$ 的图,边带权,满足以下条件:
1. $n\leq 20$
2. $m\leq 60$
3. 如果有向边 $a\rightarrow b$ 存在,那么 $a<b$ 。
4. 从 $1$ 走到 $n$ 总共有 $L$ 种不同的路径,这 $L$ 条路径的长度分别为 $0,1,\cdots , L-1$ 。
$L\leq 10^6$
题解
垃圾翻译告诉我 $n\geq 20$ 。于是我立马构造了一个 $40$ 个点的图来满足。在看样例的时候,我发现读错了题目。
然后我就一直在想如何用 $2^k$ 的边权来构造。不知道为什么我只在想用这种边权构造。
然后我扔掉这种做法想出了一个 AC 做法,5分钟敲完 AC 了。赛后,Funtionendless 给我讲了一下他口胡的做法,然而我发现和我之前想的假做法好像,说他是错的;然后最后我发现我…… 于是我又知道了一种做法。
由于这两种做法的正确性都比较显然,所以不加解释。
做法1:by me
build(x,L){//以x为当前子图的最小标号节点,构造一个具有 [0,L] 的路径长度的图
if (L==0){
AddEdge(x,n,0);
return;
}
if (L==1){
AddEdge(x,n,0);
AddEdge(x,n,1);
return;
}
y=NewNode();
if (L mod 2==0)
AddEdge(x,n,L);
if (L mod 2==0)
L=L div 2-1;
else
L=L div 2;
AddEdge(x,y,0);
AddEdge(x,y,L);
build(y,L);
}
做法2:by Funtionendless
int calc(int x,int i){//以x为当前子图的最小标号节点,构造一个具有 [0,L) 的路径长度的图
return x&~((1<<(i+1))-1);
}
int GetD(int x,int i){
return x的i次二进制位;
}
n=20;
build(x,L){
for (i = 0 to 18){
AddEdge(i+1,i+2,Pow(2,i));
AddEdge(i+1,i+2,0);
}
if (GetD(0))
AddEdge(1,n,calc(L,0));
for (i = 1 to 19)
if (GetD(L,i)==1)
AddEdge(i,n,calc(L,i));
}
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=105;
LL read(){
LL x=0,f=1;
char ch=getchar();
while (!isdigit(ch)&&ch!='-')
ch=getchar();
if (ch=='-')
f=-1,ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x*f;
}
int n,m=0,L;
int A[N],B[N],C[N];
void push(int a,int b,int c){
m++;
A[m]=a;
B[m]=b;
C[m]=c;
}
int main(){
L=read()-1;
n=20;
int cnt=1;
while (L>=0){
if (L==0){
if (cnt<n)
push(cnt,n,0);
break;
}
if (L==1){
push(cnt,n,0);
push(cnt,n,1);
break;
}
if (L%2==0)
push(cnt,n,L);
L=(L+1)/2;
push(cnt,cnt+1,0);
push(cnt,cnt+1,L);
L--;
cnt++;
}
printf("%d %d\n",n,m);
for (int i=1;i<=m;i++)
printf("%d %d %d\n",A[i],B[i],C[i]);
return 0;
}
AtCoder Regular Contest 102 (ARC102) D All Your Paths are Different Lengths 构造的更多相关文章
- AtCoder Regular Contest 102 (ARC102) E - Stop. Otherwise... 排列组合
原文链接https://www.cnblogs.com/zhouzhendong/p/ARD102E.html 题目传送门 - ARC102E 题意 有 $n$ 个取值为 $[1,k]$ 的骰子,对于 ...
- AtCoder Regular Contest 102
AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...
- AtCoder Regular Contest 102 E Stop. Otherwise...
题目链接:atcoder 大意:有\(n\)个骰子,每个骰子上面有\(k\)个数,分别是\(1\text ~ k\),现在求\(\forall i\in[2...2k]\),求出有多少种骰子点数的组合 ...
- AtCoder Regular Contest 102 D - All Your Paths are Different Lengths
D - All Your Paths are Different Lengths 思路: 二进制构造 首先找到最大的t,使得2^t <= l 然后我们就能构造一种方法使得正好存在 0 到 2^t ...
- 2018.09.02 Atcoder Regular Contest 102简要题解
比赛传送门 T1 Triangular Relationship 分析之后发现有两种情况: 1. n为奇数,那么所有数都是k的倍数. 2. n为偶数,那么所有数都是k/2的倍数. 然后就可以愉快A题了 ...
- AtCoder Regular Contest 061
AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...
- AtCoder Regular Contest 094 (ARC094) CDE题解
原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...
- AtCoder Regular Contest 092
AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...
- AtCoder Regular Contest 093
AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...
随机推荐
- PHP字符串比较,看起来值完全一样,但是就是不相等的解决方案(‌)
1 前言 字符串比较,看起来完全一样,然后用strcmp比较,永远不相等,用var_dump查看才知道,其中一个字符多了看不见的特殊符号,而我长度是3. 2 样例 当你选中它,显示出来的就是人眼所见 ...
- Android下利用zbar类库实现扫一扫
程序源代码及可执行文件下载地址:http://files.cnblogs.com/rainboy2010/zbardemo.zip Android下常用的条码扫描类库有zxing和zbar,比较了一下 ...
- 分布式全文检索引擎之ElasticSearch
一 什么是 ElasticSearch Elasticsearch 是一个分布式可扩展的实时搜索和分析引擎,一个建立在全文搜索引擎 Apache Lucene(TM) 基础上的搜索引擎.当然 Elas ...
- nginx的location、rewrite玩法详解
1. location正则写法 一个示例: 1234567891011121314151617181920212223242526272829303132333435363738394041424 ...
- 洛谷P4117 [Ynoi2018]五彩斑斓的世界 [分块,并查集]
洛谷 Codeforces 又是一道卡常题-- 思路 YNOI当然要分块啦. 分块之后怎么办? 零散块暴力,整块怎么办? 显然不能暴力改/查询所有的.考虑把相同值的用并查集连在一起,这样修改时就只需要 ...
- Synchronizing timer
http://blog.csdn.net/zjq001x/article/details/53107159 集合点: 简单来理解一下,虽然我们的“性能测试”理解为“多用户并发测试”,但真正的并发是不存 ...
- 配置一个 Confluence 6 环境
本部分对你 Confluence 的外部设置进行描述.包括有如何配置 Web 服务器,应用服务器,目录和文件等信息—— Confluence 运行所需要的所有环境.有关在服务器内部对配置进行修改的内容 ...
- Confluence 6 虚拟文件和文件夹
在取消点赞事件中,你可能会遇到 WebDAV 客户端的问题或者不稳定的情况,你可以启用访问自动创建(虚拟)文件和文件夹. 备注: 在默认情况下,这个选项隐藏在 'WebDAV Configurati ...
- easyUI详解
1.EasyUI 是前端框架,封装大量 css和封装大量 JS 2.使用前端框架时,给标签定义class 属性,就会有样式和脚本功能了 3.data-options 属性是定义 easyui 属性的, ...
- NIO(三)
使用直接缓冲区完成文件的复制(内存映射文件) package com.cppdy.nio; import java.nio.MappedByteBuffer; import java.nio.chan ...