51Nod1675 序列变换 数论 莫比乌斯反演
原文http://www.cnblogs.com/zhouzhendong/p/8665675.html
题目传送门 - 51Nod1675
题意
给定序列$a,b$,让你求满足$\gcd(x,y)=1,a_{b_x}=b_{a_y}$的$(x,y)$的个数。
题解
我们先考虑没有$gcd(x,y)=1$的情况。
仔细一看发现$a_{b_x}=b_{a_y}$是个障眼法,跟你绕来绕去。
弄个新的$A,B$序列,其中$A_x=a_{b_x},B_x=b_{a_x}$。然后就把这个条件变成了$A_x=B_y$。舒服多了。
然后我们可以把其中一个序列信息放进桶里面,然后另一个随便弄几下,就可以$O(n)$搞定了。
考虑到$gcd(x,y)=1$。于是这里要用到莫比乌斯反演套路:倍数反演。
设$f(i)$表示$i=gcd(x,y)$的满足条件的答案数。
设$F(i)$表示$i|gcd(x,y)$的满足条件的答案数。
于是这里可以放上倍数反演的式子:
$$F(n)=\sum_{n|d}f(d)\Longrightarrow f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$$
这里只需要求$f(1)=\sum_{i=1}^{n}\mu(i)*F(i)$。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=100005;
int n,a[N],b[N],_a[N],_b[N],tax[N];
int prime[N],u[N],pcnt=0;
LL F[N];
bool f[N];
void get_prime(int n){
memset(f,true,sizeof f);
u[1]=1,f[0]=f[1]=0;
for (int i=2;i<=n;i++){
if (f[i])
prime[++pcnt]=i,u[i]=-1;
for (int j=1;j<=pcnt&&i*prime[j]<=n;j++){
f[i*prime[j]]=0;
if (i%prime[j])
u[i*prime[j]]=-u[i];
else {
u[i*prime[j]]=0;
break;
}
}
}
}
int main(){
scanf("%d",&n);
get_prime(n);
for (int i=1;i<=n;i++)
scanf("%d",&_a[i]);
for (int i=1;i<=n;i++)
scanf("%d",&_b[i]);
for (int i=1;i<=n;i++)
a[i]=_a[_b[i]],b[i]=_b[_a[i]];
memset(tax,0,sizeof tax);
LL ans=0;
for (int i=1;i<=n;i++){
F[i]=0;
for (int j=i;j<=n;j+=i)
tax[a[j]]++;
for (int j=i;j<=n;j+=i)
F[i]+=tax[b[j]];
for (int j=i;j<=n;j+=i)
tax[a[j]]--;
ans+=F[i]*u[i];
}
printf("%lld",ans);
return 0;
}
51Nod1675 序列变换 数论 莫比乌斯反演的更多相关文章
- 51Nod 欢乐手速场1 B 序列变换[容斥原理 莫比乌斯函数]
序列变换 alpq654321 (命题人) 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 lyk有两序列a和b. lyk想知道存在多少对x,y,满足以下两个条件. 1:gcd( ...
- 【BZOJ4176】Lucas的数论 莫比乌斯反演
[BZOJ4176]Lucas的数论 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)) ...
- UOJ#62. 【UR #5】怎样跑得更快 数论 莫比乌斯反演
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ62.html 题解 太久没更博客了,该拯救我的博客了. $$\sum_{1\leq j \leq n} \ ...
- 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元
题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...
- [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- 51nod1675 序列变换
link 题意: 给定长为n的序列a,b,下标从1开始,问有多少对x,y满足gcd(x,y)=1且$a_{b_x}=b_{a_y}$? $n\leq 10^5.$ 题解: $a_{b_x}$和$b_{ ...
- 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- 组合 数论 莫比乌斯反演 hdu1695
题解:https://blog.csdn.net/lixuepeng_001/article/details/50577932 题意:给定范围1-b和1-d求(i,j)=k的数对的数量 #includ ...
- BZOJ4816 [Sdoi2017]数字表格 数论 莫比乌斯反演
原文链接http://www.cnblogs.com/zhouzhendong/p/8666106.html 题目传送门 - BZOJ4816 题意 定义$f(0)=0,f(1)=1,f(i)=f(i ...
随机推荐
- 分布式服务管理框架 ZooKeeper
核心功能 统一命名服务(Name Service) 通过有层次的目录结构产生唯一的名称,同时可以将名称关联到特定资源 配置管理(Configuration Management) ...
- 清北学堂 清北-Day1-R1-Count
题目描述 问有几个无序二元组 (x; y) 满足 xy ≡ 1 (mod P ); 0 ≤ x < P; 0 ≤ y <P.无序二元组是指,如果 P = 10, (3; 7) 和 (7; ...
- 来,了解一下Java内存模型(JMM)
网上有很多关于Java内存模型的文章,在<深入理解Java虚拟机>和<Java并发编程的艺术>等书中也都有关于这个知识点的介绍.但是,很多人读完之后还是搞不清楚,甚至有的人说自 ...
- 使用XIB 或者storyboard 创建imageView 模式 UIViewContentModeScaleAspectFill 图片越界问题
ImageView UIViewContentModeScaleAspectFill 超出边界的问题 代码如下 [_photoView setClipsToBounds:Yes]; sto ...
- Modbus库开发笔记:Modbus ASCII Master开发
这一节我们来封装Modbus ASCII Master应用,Modbus ASCII主站的开发与RTU主站的开发是一致的.同样的我们也不是做具体的应用,而是实现ASCII主站的基本功能.我们将ASCI ...
- JavaScript从入门到精通(附光盘1张):作者:明日科技出版社:清华大学出版社出版时间:2012年09月
本书介绍 一:本书 pdf 获取信息 本书下载:请申请加入本群 (QQ群:668345923), 并联系群主. 本群主有:本书pdf 全文教材 及附带的 光盘内容 二:本书目录介绍 第1篇 基 ...
- Confluence 6 计划任务
管理员控制台能够允许你对 Confluence 运行的计划任务进行计划的调整,这些计划任务将会按照你的调整按时执行.可以按照计划执行的任务如下: Confluence 站点备份 存储优化任务,清理 C ...
- Uiautomator - 6.0 以上权限受限问题
问题:在android studio中使用UiAutomator 2.0 编写测试用例时,要实现截图(非命令方式),写入文件时出现权限被拒绝的提示.例如: java.io.FileNotFoundEx ...
- ipone mac真机调试
safiri 识别不了iPhone 真机 需要在iPhone上 做设置 safri-> 高级 ->web检查器 进行设置,然后重新启动 safri即可...
- 爬虫----beautifulsoup的简单使用
beautifulSoup使用: 简单来说,Beautiful Soup是python的一个库,最主要的功能是从网页抓取数据. pip3 install beautifulsoup4 解析器 Beau ...