A transition between the states only occurs on the rising edge of TCK, and each state has a different name.

The two vertical columns with seven states each represent the Instruction Path and the Data Path.

The data registers operate in the states whose names end with "DR" and

the instruction register operates in the states whose names end in "IR".

The states are otherwise identical.

The operation of each state is described below.

Test-Logic-Reset
All test logic is disabled in this controller state enabling the normal operation of the IC.
The TAP controller state machine is designed so that, no matter what the initial state of the controller is,
the Test-Logic-Reset state can be entered by holding TMS at high and pulsing TCK five times.
This is why the Test Reset (TRST) pin is optional.

Run-Test-Idle
In this controller state, the test logic in the IC is active only if certain instructions are present.
For example, if an instruction activates the self test, then it is executed when the controller enters this state.
The test logic in the IC is idle otherwise.

Select-DR-Scan
This controller state controls whether to enter the Data Path or the Select-IR-Scan state.

Select-IR-Scan
This controller state controls whether or not to enter the Instruction Path.
The Controller can return to the Test-Logic-Reset state otherwise.

Capture-IR
In this controller state, the shift register bank in the Instruction Register
parallel loads a pattern of fixed values on the rising edge of TCK.
The last two significant bits must always be "01".

Shift-IR
In this controller state, the instruction register gets connected between TDI and TDO,
and the captured pattern gets shifted on each rising edge of TCK.
The instruction available on the TDI pin is also shifted in to the instruction register.

Exit1-IR
This controller state controls whether to enter the Pause-IR state or Update-IR state.

Pause-IR
This state allows the shifting of the instruction register to be temporarily halted.

Exit2-DR
This controller state controls whether to enter either the Shift-IR state or Update-IR state.

Update-IR
In this controller state, the instruction in the instruction register is
latched to the latch bank of the Instruction Register on every falling edge of TCK.
This instruction becomes the current instruction once it is latched.

Capture-DR
In this controller state, the data is parallel-loaded into the data registers selected
by the current instruction on the rising edge of TCK.

Shift-Dr, Exit1-DR, Pause-DR, Exit2-DR and Update-DR
These controller states are similar to the Shift-IR, Exit1-IR, Pause-IR, Exit2-IR
and Update-IR states in the Instruction path.

Instruction Register

The instruction register (IR) consists of three IR cells.

Each cell has a shift-register stage and a latch stage (Figure 5).

On the Capture-IR state, the shift register is loaded with bits 001,

which are used for fault isolation of the board-level serial test data path.

The TDI-IR-TDO path is established on the Shift-IR state.

Data in the shift register is shifted toward TDO, and data in the latch remains the same.

The data in the shift registers is latched out and becomes the current instruction

on the falling edge of the TCK in the Update-IR state.

When the TAP controller enters the Test-Logic Reset state,

bits 111 are latched in IR, which corresponds to the BYPASS instruction,

and the data in the shift register cell retain their previous values.

Table 2 shows the summary of the operation of the instruction register

Instructions

Table 3 lists the supported instructions with their corresponding IR codes and descriptions.

Bypass Register

The bypass register is a single-bit register that provides a minimum data path between the TDI and TDO pins (Figure 6).

The bypass register is selected when the BYPASS, HIGHZ, or CLAMP instruction is the current instruction in the instruction register.

On the Capture-DR controller state, 0 is loaded into the bypass register.

Test data can then be shifted from the TDI to the TDO pin on the Shift-DR state.

By moving into the Update-DR controller state, data movement through the bypass register is terminated.

Table 4 shows the summary of the operation of the bypass register.

Boundary-Scan Register

The boundary-scan register is used to observe and control the state of each system pin, including the clock pins.

Each boundary-scan cell consists of serial input (SI) and serial output (SO) that are connected to each cell, as shown in Figure 7.

In addition, each cell consists of a parallel input (PI) and a latched parallel output (PO) that connect to the system logic and system output.

Three cells are used for each I/O: an input cell (BS2), an output cell (BS1), and an output-enable cell (BS0).

The operation of the boundary-scan register under specific boundary-scan instruction is illustrated in Tables 5 and 6.

If the EXTEST instruction is not being used in conjunction with the SAMPLE/PRELOAD instruction,

the external test starts by shifting the desired test data into the boundary-scan register in the Shift-DR controller state.

By moving into the Update-DR controller state, data shifting is terminated, and on the falling edge of the TCK,

the data from the shift-register stage is transferred onto the parallel output of the latch stage.

The external test results are loaded into the shift-register stage from the system input on the next Capture-DR controller state

and are examined by shifting the data toward TDO on the next Shift-DR controller state.

During the SAMPLE/PRELOAD instruction, the Shift-DR state is used to shift out the data captured from the system input

and output pins for examination during the Capture-DR state.

At the same time, the Shift-DR state shifts in test data to be used by the next boundary-scan instruction

other than SAMPLE/PRELOAD.

The EXTEST instruction is usually initiated following the SAMPLE/PRELOAD instruction.

The data preloaded during the SAMPLE/PRELOAD instruction phase becomes available at the parallel output of the boundary-scan cells

when the EXTEST becomes the current instruction on the falling edge of TCK in the Update-IR state.

Similarly, the CLAMP instruction is usually initiated following the SAMPLE/PRELOAD instruction.

The latched data in the boundary-scan cell becomes available to the system output pins

when CLAMP becomes the current instruction and when the bypass register is selected as the data path from TDI to TDO.

JTAG - General description of the TAP Controller states的更多相关文章

  1. JTAG TAP Controller

    The TAP controller is a synchronous finite state machine that responds to changes at the TMS and TCK ...

  2. JTAG 引脚自动识别 JTAG Finder, JTAG Pinout Tool, JTAG Pin Finder, JTAG pinout detector, JTAGULATOR, Easy-JTAG, JTAG Enumeration

    JTAG Finder Figuring out the JTAG Pinouts on a Device is usually the most time-consuming and frustra ...

  3. ARM JTAG 信号 RTCK 应该如何处理?

    用户在调试内嵌可综合内核的 CPU 如 ARM7TDMI-S 时,需要通过打开仿真器的自适应时钟功能. 此时,ARM仿真器根据 RTCK 时钟信号的频率,产生可用于 CPU 内核当前时钟主频的最快的 ...

  4. Training JTAG Interface

    For most embedded CPU architecture implementations, the JTAG port is used by the debugger to interfa ...

  5. JTAG – A technical overview and Timing

    This document provides you with interesting background information about the technology that underpi ...

  6. SWD and JTAG selection mechanism

    SWD and JTAG selection mechanism SWJ-DP enables either an SWD or JTAG protocol to be used on the deb ...

  7. JTAG Communications model

    https://en.wikipedia.org/wiki/Joint_Test_Action_Group In JTAG, devices expose one or more test acces ...

  8. JTAG Simplified

    JTAG Simplified So the other day, I explored the JTAG bus interface which is frequently found in CPL ...

  9. ARM JTAG 20

    http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0499b/BEHEIHCE.html he ARM JTAG 20 co ...

随机推荐

  1. python的__get__、__set__、__delete__(1)

    内容:    描述符引导        摘要        定义和介绍        描述符协议        调用描述符        样例        Properties        函数和 ...

  2. Strange Queries(莫队)

    题目 You are given an array with n integers a1, a2, ..., an, and q queries to answer. Each query consi ...

  3. [转]MongoDB更新操作replaceOne()实例讲解

    最近正在学习MongoDB,作为数据库的学习当然是要从CRUD开始学起了.这篇文章默认读者是知道如何安装MongoDB.如何运行MongoDB实例以及了解了MongoDB中的collection.do ...

  4. angular有关网站

    angular官网 https://v2.angular.cn/docs/ts/latest/ angular更新信息https://github.com/angular/angular/blob/m ...

  5. activiti流程跟踪图算法

    流程跟踪图-推导算法 工作中使用activiti实现流程图相关业务,但是上线后遇到问题,偶尔流程图出不来.查阅了一下画流程图的实现,基本上是参见:activiti-流程图颜色变化之一篇. 核心类,参见 ...

  6. 移动网络简介与RRC

    1.移动网络简介 1G:表示第一代移动通讯技术,以模拟技术为基础的蜂窝无线电话系统,如现在已经淘汰的模拟移动网.1G无线系统在设计上只能传输语音流量,并受到网络容量的限制. 2G:第二代手机通信技术规 ...

  7. java 添加自己的工具包

    一. 在添加工具包前环境变量要定位到当前目录, export CLASSPATH=.:/home/share/ 添加工具类 我的目录\\192.168.1.101\share\share\net\fe ...

  8. 在idea中关闭vim模式

    每次在idea的文件中插入新的内容时,都需要先点击键盘上的i 进入插入模式,感觉这是vim编辑器的模式,很不习惯. 你可能是按照了vim emulation 插件, 在setting-----plug ...

  9. .NetCore 中如何实现分页以及编写一个URL分页

    首先看下效果 这个分页控件不是很完美,体现下思路就行了,有兴趣的可以自己完善,我把代码贴出来,在这边文章中已有一些介绍 代码 public class UosoPagerTagHelper : Tag ...

  10. ADO.Net1

    一.ADO.Net 数据库连接技术 二.查询 1.步骤: 1)使用数据库空间:using System.Data.SqlClient; 2)连接数据库 3)创建数据库操作命令 4)输入操作命令 5)开 ...