Forward secrecy
In cryptography, forward secrecy (FS), also known as perfect forward secrecy (PFS), is a property of secure communication protocols in which compromises of long-term keys do not compromise past session keys . Forward secrecy protects past sessions against future compromises of secret keys or passwords.If forward secrecy is used, encrypted communications and sessions recorded in the past cannot be retrieved and decrypted should long-term secret keys or passwords be compromised in the future, even if the adversary actively interfered, for example via a man-in-the-middle attack.
The following is a hypothetical example of a simple instant messaging protocol that employs forward secrecy:
- Alice and Bob each generate a pair of long-term, asymmetric public and private keys, then verify public-key fingerprints in person or over an already-authenticated channel. The only thing these keys will be used for is authentication, including signing messages and signing things during session key exchange. These keys will not be used for encryption of any kind.
- Alice and Bob use a key exchange algorithm such as Diffie–Hellman, to securely agree on an ephemeral session key. They use the keys from step 1 only to authenticate one another during this process.
- Alice sends Bob a message, encrypting it with a symmetric cipher using the session key negotiated in step 2.
- Bob decrypts Alice's message using the key negotiated in step 2.
- The process repeats for each new message sent, starting from step 2 (and switching Alice and Bob's roles as sender/receiver as appropriate). Step 1 is never repeated.
Forward secrecy (achieved by generating new session keys for each message) ensures that past communications cannot be decrypted if one of the keys generated in an iteration of step 2 is compromised, since such a key is only used to encrypt a single message. Forward secrecy also ensures that past communications cannot be decrypted if the long-term private keys from step 1 are compromised, however, masquerading as Alice or Bob would be possible going forward if this occurred, possibly compromising all future messages.
Forward secrecy is designed to prevent the compromise of a long-term secret key from affecting the confidentiality of past conversations. However, forward secrecy cannot defend against a successful cryptanalysis of the underlying ciphers being used, since a cryptanalysis consists of finding a way to decrypt an encrypted message without the key, and forward secrecy only protects keys, not the ciphers themselves. A patient attacker can capture a conversation whose confidentiality is protected through the use of public-key cryptography and wait until the underlying cipher is broken (e.g. large quantum computers could be created which allow the discrete logarithm problem to be computed quickly). This would allow the recovery of old plaintexts even in a system employing forward secrecy.
Weak perfect forward secrecy (wPFS) is the weaker property whereby when agents' long-term keys are compromised, the secrecy of previously established session-keys is guaranteed, but only for sessions in which the adversary did not actively interfere. This new notion, and the distinction between this and forward secrecy was introduced by Hugo Krawczyk in 2005. This weaker definition implicitly requires that full (perfect) forward secrecy maintains the secrecy of previously established session keys even in sessions where the adversary did actively interfere, or attempted to act as a man in the middle.
Forward secrecy is present in several major protocol implementations, such as SSH and as an optional feature in IPsec (RFC 2412). Off-the-Record Messaging, a cryptography protocol and library for many instant messaging clients, provides forward secrecy as well as deniable encryption.
In Transport Layer Security (TLS), Diffie–Hellman key exchange-based PFSs (DHE-RSA, DHE-DSA) and elliptic curve Diffie–Hellman-based PFSs (ECDHE-RSA, ECDHE-ECDSA) are available. In theory, TLS can choose appropriate ciphers since SSLv3, but in everyday practice many implementations have refused to offer forward secrecy or only provide it with very low encryption grade.[8]
OpenSSL supports forward secrecy using elliptic curve Diffie–Hellman since version 1.0,[9] with a computational overhead of approximately 15%.[10]
The Signal Protocol uses the Double Ratchet Algorithm to provide forward secrecy.[11]
On the other hand, among popular protocols currently in use, WPA doesn't support forward secrecy.
Forward secrecy is seen as an important security feature by several large Internet information providers. Since late 2011, Google provided forward secrecy with TLS by default to users of its Gmail service, Google Docs service, and encrypted search services.[9] Since November 2013, Twitter provided forward secrecy with TLS to its users.[12] Wikis hosted by the Wikimedia Foundation have all provided forward secrecy to users since July 2014.[13]
Facebook reported as part of an investigation into email encryption that, as of May 2014, 74% of hosts that support STARTTLS also provide Forward Secrecy.[14] As of June 2016, 51.9% of TLS-enabled websites are configured to use cipher suites that provide forward secrecy to modern web browsers.[15]
At WWDC 2016, Apple announced that all iOS apps would need to use "ATS" (App Transport Security), a feature which enforces the use of HTTPS transmission. Specifically, ATS requires the use of an encryption cipher that provides forward secrecy.[16]ATS became mandatory for apps on Jan 1st, 2017.[17]
Forward secrecy的更多相关文章
- iOS的ATS配置 - 2017年前ATS规定的适配
苹果规定 从2017年1月1日起,新提交的 app 不允许使用NSAllowsArbitraryLoads来绕过ATS(全称:App Transport Security)的限制. 以前为了能兼容ht ...
- 著名ERP厂商的SSO单点登录解决方案介绍一
SSO英文全称Single Sign On,单点登录.SSO是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统.它包括可以将这次主要的登录映射到其他应用中用于同一个用户 ...
- Windows Server 2008 R2 下配置TLS1.2,添加自签名证书
前言 2017年1月1日起App Store上的所有App应用将强制开启ATS功能. 苹果的ATS(App Transport Security)对服务器硬性3点要求: ① ATS要求TLS1.2或者 ...
- iOS9网络适配(ATS)
[转]iOS9 new_001:iOS9网络适配(ATS) 下载Xcode7打开APP后大家都发现自己的APP无法联网了,why? 苹果官方文档介绍如下: App Transport Security ...
- 小众Tox——大众的“去中心化”聊天软件
★Tox是什么 一个反窥探的开源项目:一种基于DHT(BitTorrent)技术的即时通讯协议:一个为安全而生的加密通讯系统 .美国棱镜计划曝光后,一个名为 irungentoo 的牛人于17天后的2 ...
- openswan-ipsec.conf配置说明
Name ipsec.conf - IPsec configuration and connections Description The optional ipsec.conf file speci ...
- 在服务器上启用HTTPS的详细教程
现在,你应该能在访问https://konklone.com的时候,在地址栏里看到一个漂亮的小绿锁了,因为我把这个网站换成了HTTPS协议.一分钱没花就搞定了. 为什么要使用HTTPS协议: 虽然SS ...
- Neutron 理解(10):虚拟专用网(VPN)虚拟化 [How Neutron implements VPN Virtualization]
学习 Neutron 系列文章: (1)Neutron 所实现的虚拟化网络 (2)Neutron OpenvSwitch + VLAN 虚拟网络 (3)Neutron OpenvSwitch + GR ...
- iOS:根据日志去定位网络请求发生的错误是由于服务端造成的,还是客户端造成的?
一.介绍 在项目开发中,服务端和客户端的协作尤为重要,而连接它们的最重要的环节之一就是网络请求,对于服务端而言,如果这个环节出现了错误,那么安全性就无从谈起,同时对于客户端而言,如果这个模块出现了错误 ...
随机推荐
- 记在VMware虚拟机中对网站进行性能压力测试的经历
由于本次测试,仅仅是对静态网站首页进行的测试,所以没有涉及到MySQL数据库的性能监测 服务器基本配置 webbench测试工具 Linux上一款优秀的web性能压力测试工具.webbench最多可以 ...
- Oracle数据库游标,序列,存储过程,存储函数,触发器
游标的概念: 游标是SQL的一个内存工作区,由系统或用户以变量的形式定义.游标的作用就是用于临时存储从数据库中提取的数据块.在某些情况下,需要把数据从存放在磁盘的表中调到计算机内存中进行处理, ...
- httpclient初步封装
Http通信方式:HttpURLConnection和HttpClient HttpURLConnection是java的标准类,什么都没封装,用起来太原始,不方便HttpClient就是一个增强版的 ...
- centos yum 安装php mysql
1 安装php7 查看 centos 版本 # cat /etc/centos-release 删除之前的 php 版本 # yum remove php* php-common rpm 安装 Php ...
- Home Assistant + 树莓派:强大的智能家居系统 · 设备接入篇
转载:Home Assistant + 树莓派:强大的智能家居系统 · 设备接入篇 目录 HASS 配置框架 主文件设置 Homebridge 设置 鹬蚌相争? 设备追踪设置 更新日志 作者的话 相信 ...
- Ural 2037. Richness of binary words 打表找规律 构造
2037. Richness of binary words 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=2037 Descripti ...
- Android学习笔记PreferenceFragment的使用
相信大家对Perference都比较熟悉了,也就是我们常说的偏好设置,首选项设置,可以保存一些数据,例如我们在上一次使用的时候的一些内容,希望在下一次启动后依然生效,而不需要再进行配置那么麻烦.一般这 ...
- LPC18xx/43xx OTP Controller driver
LPC18xx/43xx OTP Controller driver /* * @brief LPC18xx/43xx OTP Controller driver * * @note * Copyri ...
- Xamarin.Forms.Xaml.XamlParseException: MarkupExtension not found for trans:Translate using a PCL in Release Mode
I'm pretty desperate finding the solution for the problem stated below. I have a cross platform solu ...
- 移植Python3到TQ2440(一)
平台 硬件:TQ2440 64MB内存 256MB NandFlash bootloader:U-Boot 2015.04 kernel:linux-4.9 Python: Python-3.6.0 ...