题目描述

求 A^B 的所有约数之和 mod 9901。

首先,我们要求出A的约数之和。

就是把A分解质因数,成为:a1^k1*a2^k2*a3^k2....

然后约数和就是(a1^0+a1^1+a1^2+....)*(a2^0+a2^1+....)*.......

那么A的B次方就是每一位都乘以一个B

然后对于每一个ai,都是一个等比数列求和。

然后求和公式需要用到除法,需要逆元。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <queue>
#define in(a) a=read()
#define MAXN 100010
#define REP(i,k,n) for(long long i=k;i<=n;i++)
using namespace std;
inline long long read(){
long long x=,f=;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
f=-;
for(;isdigit(ch);ch=getchar())
x=x*+ch-'';
return x*f;
}
long long pr[],ti[];
long long ind=;
long long mod=;
inline void divide(long long n){
for(long long i=;i*i<=n;i++)
if(n%i==){
pr[++ind]=i;
while(n%i==){
n=n/i;
ti[ind]++;
}
}
if(n>){
pr[++ind]=n;
ti[ind]=;
}
return ;
}
inline long long qpow(long long a,long long b){
long long ans=;
while(b){
if(b%) ans=(ans*a)%mod;
b/=;
a=(a*a)%mod;
}
return ans;
}
int main(){
long long a,b;
long long ans=;
in(a),in(b);
divide(a);
REP(i,,ind){
if(pr[i]-%mod==)
ans=ans*(ti[i]*b)%mod;
long long den,dor;
den=qpow(pr[i],b*ti[i]+)-;
dor=qpow(pr[i]-,mod-);
ans=(ans*(den*dor)%mod)%mod;
}
cout<<ans;
return ;
}

Loj 10211 sumdiv的更多相关文章

  1. loj题目总览

    --DavidJing提供技术支持 现将今年7月份之前必须刷完的题目列举 完成度[23/34] [178/250] 第 1 章 贪心算法 √ [11/11] #10000 「一本通 1.1 例 1」活 ...

  2. POJ 1845 Sumdiv

    快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 305 ...

  3. Sumdiv(快速幂+约数和)

    Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16244 Accepted: 4044 Description C ...

  4. poj 1845 Sumdiv 约数和定理

    Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...

  5. Sumdiv 等比数列求和

    Sumdiv Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15364   Accepted: 3790 De ...

  6. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  7. [Noi2016]区间 BZOJ4653 洛谷P1712 Loj#2086

    额... 首先,看到这道题,第一想法就是二分答案+线段树... 兴高采烈的认为我一定能AC,之后发现n是500000... nlog^2=80%,亲测可过... 由于答案是求满足题意的最大长度-最小长 ...

  8. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  9. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

随机推荐

  1. html5 canvas 弧形描边渐变

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. AngularJs -- 指令中使用子作用域

    下面将要介绍的指令会以父级作用域为原型生成子作用域.这种继承的机制可以创建一个隔离层,用来将需要协同工作的方法和数据模型对象放置在一起. ng-app和ng-controller是特殊的指令,因为它们 ...

  3. Zookeeper命名服务——生成分布式有序且唯一id

    生成分布式有序且唯一id的方法有很多种,使用zookeeper是比较简单的一种方法,只是生成的速度不高,这里只是一个借助zk的版本号生成分布式唯一且有序id的例子. ZkIdGenerator.jav ...

  4. Docker01 CentOS配置Docker

    Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...

  5. lucene简介——(一)

    0.概念性东西 1.数据分类

  6. mysql学习------权限机制

    MySQL服务器通过MySQL权限表来控制用户对数据库的访问,MySQL权限表存放在mysql数据库里,由mysql_install_db脚本初始化.这些MySQL权限表分别user,db,table ...

  7. The project cannot be built until its prerequisite base-service is built. Cleaning and building all projects is recommended

    参考网址:http://chiangfai.iteye.com/blog/2223661,谢谢! 果然如文中所述,close,重新编译即可!

  8. WCF客户端调用服务器端错误:"服务器已拒绝客户端凭据"。

    WCF客户端和服务器端不在同一台机器上时,客户端调用服务器端会报如下错误:"服务器已拒绝客户端凭据". 解决办法:在服务端配置文件与客户端配置文件中加入下面红色部分

  9. yolov2在CUDA8.0+cudnn8.0下安装、训练、检测经历

    这次用yolov2做检测时遇到个大坑,折腾了我好几天,特以此文记录之. 一.安装cuda+cudnn 它们的版本必须要匹配,否则训练后检测不出目标! 1.下载cuda8.0.61_375.26_lin ...

  10. Centos7下yum安装zabbix-server的部署(一)

    一.环境准备 OS:CentOS 7.2 64bit Zabbix版本:3.0.12 MySQL版本:5.6 hostname ip 主机用途zabbix-server 10.0.0.44 服务端 z ...