Loj 10211 sumdiv
题目描述
求 A^B 的所有约数之和 mod 9901。
首先,我们要求出A的约数之和。
就是把A分解质因数,成为:a1^k1*a2^k2*a3^k2....
然后约数和就是(a1^0+a1^1+a1^2+....)*(a2^0+a2^1+....)*.......
那么A的B次方就是每一位都乘以一个B
然后对于每一个ai,都是一个等比数列求和。
然后求和公式需要用到除法,需要逆元。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <queue>
#define in(a) a=read()
#define MAXN 100010
#define REP(i,k,n) for(long long i=k;i<=n;i++)
using namespace std;
inline long long read(){
long long x=,f=;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
f=-;
for(;isdigit(ch);ch=getchar())
x=x*+ch-'';
return x*f;
}
long long pr[],ti[];
long long ind=;
long long mod=;
inline void divide(long long n){
for(long long i=;i*i<=n;i++)
if(n%i==){
pr[++ind]=i;
while(n%i==){
n=n/i;
ti[ind]++;
}
}
if(n>){
pr[++ind]=n;
ti[ind]=;
}
return ;
}
inline long long qpow(long long a,long long b){
long long ans=;
while(b){
if(b%) ans=(ans*a)%mod;
b/=;
a=(a*a)%mod;
}
return ans;
}
int main(){
long long a,b;
long long ans=;
in(a),in(b);
divide(a);
REP(i,,ind){
if(pr[i]-%mod==)
ans=ans*(ti[i]*b)%mod;
long long den,dor;
den=qpow(pr[i],b*ti[i]+)-;
dor=qpow(pr[i]-,mod-);
ans=(ans*(den*dor)%mod)%mod;
}
cout<<ans;
return ;
}
Loj 10211 sumdiv的更多相关文章
- loj题目总览
--DavidJing提供技术支持 现将今年7月份之前必须刷完的题目列举 完成度[23/34] [178/250] 第 1 章 贪心算法 √ [11/11] #10000 「一本通 1.1 例 1」活 ...
- POJ 1845 Sumdiv
快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 305 ...
- Sumdiv(快速幂+约数和)
Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16244 Accepted: 4044 Description C ...
- poj 1845 Sumdiv 约数和定理
Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...
- Sumdiv 等比数列求和
Sumdiv Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 15364 Accepted: 3790 De ...
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
- [Noi2016]区间 BZOJ4653 洛谷P1712 Loj#2086
额... 首先,看到这道题,第一想法就是二分答案+线段树... 兴高采烈的认为我一定能AC,之后发现n是500000... nlog^2=80%,亲测可过... 由于答案是求满足题意的最大长度-最小长 ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
随机推荐
- JMS之——ActiveMQ时抛出的错误Could not connect to broker URL-使用线程池解决高并发连接
转载请注明出处:http://blog.csdn.net/l1028386804/article/details/69046395 解决使用activemq时抛出的异常:javax.j ms.JMSE ...
- 使用storyboard显示UITableView时,如果不修改系统默认生成的tableView:cellForRowAtIndexPath:方法中的代码,则必须为UITableViewCell注册(填写)重用标识符:identifier.必须要代码方法中的标识符一致.
CHENYILONG Blog 使用storyboard显示UITableView时,如果不修改系统默认生成的tableView:cellForRowAtIndexPath:方法中的代码,则必须为UI ...
- 第13月第13天 iOS 放大消失动画
1. - (void) animate { [UIView animateWithDuration:0.9 animations:^{ CGAffineTransform transform = CG ...
- CF258D Little Elephant and Broken Sorting (带技巧的DP)
题面 \(solution:\) 这道题主要难在考场上能否想到这个思路(即如何设置状态)(像我这样的蒟蒻就想不到呀QAQ)不过这一题确实很神奇! \(f[i][j]:\)表示第 \(a_i\) 个数比 ...
- python学习之——import sys模块
(1)sys.argv sys模块中的argv变量通过使用点号指明——sys.argv——这种方法的一个优势是这个名称不会与任何在你的程序中使用的argv变量冲突.另外,它也清晰地表明了这个名称是sy ...
- Linux那些事儿之我是Hub(大结局)挂起自动化【转】
转自:http://blog.csdn.net/fudan_abc/article/details/1805471 目睹了当今大学校园的素质流氓化,kiss公开化,消费白领化,上课梦游化,逃课普遍化, ...
- 公共语言运行库(CLR)开发系列课程(1):Pinvoke 简介 学习笔记
前言 让拖管代码对象和非托管对象协同工作的过程称为互用性(Interoperability),通常简称为 Interop. P/Invoke在托管代码与非托管代码交互式时产生一个事务(Transiti ...
- poj1273
赤裸裸的最大流 #include <iostream> #include <cstdio> #include <cstdlib> #include <cstr ...
- python 列表元组加减乘除法
元组(typle)列表(list)没有减法和除法,但有加法和乘法. 1.加法,即把元素相加.只可以list和tuple相加,不能加其他类型. t= (1, ) + (2, 3, 4) print(t, ...
- DOM文档对象模型简介
DOM简介 DOM是W3C(万维网联盟)的标准 "W3C文档对象模型DOM是中立于平台和语言的接口,它允许程序和脚本动态地访问和更新文档的内容.结构.样式".W3C DOM ...