用后缀树统计出出现了x次的本质不同的子串的个数,最后再乘以x,得到一个多项式。

这个多项式常数项为0,但是一次项不为0。

于是把整个多项式除以一次项,通过多项式求ln和多项式求exp求出它的幂。

最后再把除掉的项乘回来即可,时间复杂度$O(n\log n)$。

#include<cstdio>
#include<cstring>
typedef long long ll;
const int N=262144,K=17,inf=~0U>>2,S=27,M=200010,P=1005060097,G=5;
char s[M];
int n,m,x,i,j,k,C;
int a[N+10],b[N+10],tmp[N],tmp2[N],g[K+1],ng[K+1],inv[N+10],inv2;
int text[M],root,last,pos,need,remain,acnode,ace,aclen,size[M];
inline int min(int a,int b){return a<b?a:b;}
struct node{int st,en,lk,son[S];inline int len(){return min(en,pos+1)-st;}}tree[M];
inline int new_node(int st,int en=inf){return tree[++last].st=st,tree[last].en=en,last;}
inline int acedge(){return text[ace];}
inline void addedge(int node){
if(need)tree[need].lk=node;
need=node;
}
inline bool down(int node){
if(aclen>=tree[node].len())return ace+=tree[node].len(),aclen-=tree[node].len(),acnode=node,1;
return 0;
}
inline void init(){
need=last=remain=ace=aclen=0;
root=acnode=new_node(pos=-1,-1);
}
inline void extend(int c){
text[++pos]=c;need=0;remain++;
while(remain){
if(!aclen)ace=pos;
if(!tree[acnode].son[acedge()])tree[acnode].son[acedge()]=new_node(pos),addedge(acnode);
else{
int nxt=tree[acnode].son[acedge()];
if(down(nxt))continue;
if(text[tree[nxt].st+aclen]==c){aclen++;addedge(acnode);break;}
int split=new_node(tree[nxt].st,tree[nxt].st+aclen);
tree[acnode].son[acedge()]=split;
tree[split].son[c]=new_node(pos);
tree[nxt].st+=aclen;
tree[split].son[text[tree[nxt].st]]=nxt;
addedge(split);
}
remain--;
if(acnode==root&&aclen)aclen--,ace=pos-remain+1;
else acnode=tree[acnode].lk?tree[acnode].lk:root;
}
}
void dfs(int x,int sum){
sum+=tree[x].len();
if(tree[x].en==inf&&pos-sum+1<=n)size[x]=1;
for(int i=0;i<S;i++)if(tree[x].son[i]){
int j=tree[x].son[i];
dfs(j,sum),size[x]+=size[j];
}
if(size[x])a[size[x]]=(a[size[x]]+tree[x].len())%P;
}
inline int pow(int a,int b){int t=1;for(;b;b>>=1,a=1LL*a*a%P)if(b&1)t=1LL*t*a%P;return t;}
inline void NTT(int*a,int n,int t){
for(int i=1,j=0;i<n-1;i++){
for(int s=n;j^=s>>=1,~j&s;);
if(i<j){int k=a[i];a[i]=a[j];a[j]=k;}
}
for(int d=0;(1<<d)<n;d++){
int m=1<<d,m2=m<<1,_w=t==1?g[d]:ng[d];
for(int i=0;i<n;i+=m2)for(int w=1,j=0;j<m;j++){
int&A=a[i+j+m],&B=a[i+j],t=1LL*w*A%P;
A=B-t;if(A<0)A+=P;
B=B+t;if(B>=P)B-=P;
w=1LL*w*_w%P;
}
}
if(t==-1)for(int i=0,j=inv[n];i<n;i++)a[i]=1LL*a[i]*j%P;
}
void getinv(int*a,int*b,int n){
if(n==1){b[0]=pow(a[0],P-2);return;}
getinv(a,b,n>>1);
int k=n<<1,i;
for(i=0;i<n;i++)tmp[i]=a[i];
for(i=n;i<k;i++)tmp[i]=b[i]=0;
NTT(tmp,k,1),NTT(b,k,1);
for(i=0;i<k;i++){
b[i]=(ll)b[i]*(2-(ll)tmp[i]*b[i]%P)%P;
if(b[i]<0)b[i]+=P;
}
NTT(b,k,-1);
for(i=n;i<k;i++)b[i]=0;
}
inline void getln(int*a,int*b,int n){
getinv(a,tmp2,n);
int k=n<<1,i;
for(i=0;i<n-1;i++)b[i]=(ll)a[i+1]*(i+1)%P;
for(i=n-1;i<k;i++)b[i]=0;
NTT(b,k,1),NTT(tmp2,k,1);
for(i=0;i<k;i++)b[i]=(ll)b[i]*tmp2[i]%P;
NTT(b,k,-1);
for(i=n-1;i;i--)b[i]=(ll)b[i-1]*inv[i]%P;b[0]=0;
}
void getexp(int*a,int*b,int n){
if(n==1){b[0]=1;return;}
getexp(a,b,n>>1);
getln(b,tmp,n);
int k=n<<1,i;
for(i=0;i<n;i++){tmp[i]=a[i]-tmp[i];if(tmp[i]<0)tmp[i]+=P;}
if((++tmp[0])==P)tmp[0]=0;
for(i=n;i<k;i++)tmp[i]=b[i]=0;
NTT(tmp,k,1),NTT(b,k,1);
for(i=0;i<k;i++)b[i]=(ll)b[i]*tmp[i]%P;
NTT(b,k,-1);
for(i=n;i<k;i++)b[i]=0;
}
int main(){
scanf("%d%d%s",&m,&x,s+1);
if(m>x)return puts("0"),0;
n=std::strlen(s+1);
for(i=1;i<=n;extend(s[i++]-'a'));extend(26);
pos--,dfs(root,0);
for(i=0;i<=x;i++)a[i]=1LL*a[i]*i%P;
C=a[1],j=pow(C,P-2);
for(i=0;i<x;i++)a[i]=1LL*a[i+1]*j%P;
for(i=x;i<k;i++)a[i]=0;
for(g[K]=pow(G,(P-1)/N),ng[K]=pow(g[K],P-2),i=K-1;~i;i--)g[i]=(ll)g[i+1]*g[i+1]%P,ng[i]=(ll)ng[i+1]*ng[i+1]%P;
for(inv[1]=1,i=2;i<=N;i++)inv[i]=(ll)(P-inv[P%i])*(P/i)%P;inv2=inv[2];
for(k=1;k<=x;k<<=1);
getln(a,b,k);
for(i=0;i<k;i++)b[i]=1LL*b[i]*m%P;
getexp(b,a,k);
return printf("%d",1LL*a[x-m]*pow(C,m)%P),0;
}

  

BZOJ4175 : 小G的电话本的更多相关文章

  1. BZOJ 4175: 小G的电话本 SAM+FFT

    4175: 小G的电话本 Time Limit: 45 Sec  Memory Limit: 256 MBSubmit: 195  Solved: 48[Submit][Status][Discuss ...

  2. BZOJ 4175 小G的电话本 ——NTT

    后缀自动机统计出现了各种次数的串的和. 就是所谓的生成函数 然后FFT卷积即可. 卷积快速幂$n\log n \log n$ 注意一下实现,可以少两次NTT #include <map> ...

  3. C语言实现电话本 动态开辟 信息存储于文件

    下面是我用C写的一个电话本小项目,实现的功能有:添加 删除 修改 查找 排序 清空 显示,功能还是比较全的,内存也是动态开辟的.能存储于本地,能从本地读出并显示 头文件部分代码,contact.h: ...

  4. 微信电话本可免费拨打网络电话 通话一分钟约300K流量

    微信电话本新版本于昨日晚间发布,这是一款智能通讯增强软件,通话双方都下载此APP并开通免费通话功能就能使用微信电话本拨打免费网络电话,在对方无法接通情况下还能将音频转向语音信箱,微信电话本目前支持An ...

  5. C++之路进阶——codevs2933(诗人小G)

    2933 诗人小G 2009年NOI全国竞赛  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master     题目描述 Description 小G是一个出色的诗人 ...

  6. 苹果IPhone手机由于更新了IOS7 Beta测试版导致“激活出错”后,如何还原电话本和照片方法

    苹果这狗日的,手段果然狠,因为用户提前升级了测试版又没有更新正式版,就突然把手机变砖头,既不让升级正式版,也不让备份手机中的信息,确实有必要这样吗? 我的手机是IPone4s,在看了6月Apple W ...

  7. Android-->发送短信页面实现(短信发送以及群发和从电话本中选择联系人)-----------》2

    分析下怎么写 首先,我们需要一个输入框,可以手动的输入手机号码, 其次,很少有人愿意手动输入,那么我们需要提供一个按钮来给我们的用户选择自己电话本中的联系人(一次可以选择多个即群发) 然后,我们需要一 ...

  8. jdbc电话本项目

    整体思路:在登陆之后才能查看自己的电话本,电话本中包含用户名,联系人名字,电话,性别,分类: 1.登陆注册页面--数据库User表,注册登陆使用 2.电话本的前段显示,用表格和表单, 3.创建存取的电 ...

  9. JavaWeb项目之电话本,两个版本,以及总结反思

    使用技术: Oracle 数据库 前端后台: Servlet + jsp + JDBC + html + css + js 前端界面自定, 但一定实现需要的功能 实现功能: 用户可以登录 登录之后可以 ...

随机推荐

  1. Java中多个异常的捕获顺序(多个catch)

    import java.io.IOException; public class ExceptionTryCatchTest { public void doSomething() throws IO ...

  2. 数据库类型与JDBC TYPE 和Java类型对应关系

    https://blog.csdn.net/seelye/article/details/40105969

  3. ngx_lua_API 指令详解(四)ngx.exec指令

    https://github.com/openresty/lua-nginx-module#ngxexec 参照:http://blog.csdn.net/weiyuefei/article/deta ...

  4. Spring RedisTemplate操作-ZSet操作(6)

    @Autowired @Resource(name="redisTemplate") private RedisTemplate<String, String> rt; ...

  5. CSS function--(来自网易)

    /* function */ .f-cb:after,.f-cbli li:after{;overflow:hidden;content:".";} .f-cb,.f-cbli l ...

  6. 作业:JavaScript(数组篇-poker)给我的徒弟出个题。。。记得早点写完,然后大家3人可以早点打牌了

    吐槽一下:“今天实际上我左思右想,写个什么东西好呢!手上的笔转了半天....最后还是给自己留点余地!看着他们什么酒店管理系统,呼叫中心系统之类的....简直是把自己固定死了!感觉一撸到底的感觉!!!我 ...

  7. MySQL索引背后的数据结构及算法原理 (转)

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  8. 让浏览器重新下载css文件,解决不刷新缓存的问题

    网站页面源代码中的css文件和js文件后面带一个问号,后面跟着一连串数字或字符,问号起不到实际作用,仅能当作后缀,如果用问号加参数的方法,可以添加版本号等信息 它的作用有:1.作为版本号,让自己方便记 ...

  9. appium-Could not obtain screenshot: [object Object]

    原因 App页面已经被禁止截屏,禁用用户截屏的代码如下: getWindow().addFlags(WindowManager.LayoutParams.FLAG_SECURE); setConten ...

  10. CF1064B 【Equations of Mathematical Magic】

    题目要求解$a-(a\oplus x)-x=0$的解$x$的个数 移项得$a-x=a\oplus x$ $a$的二进制形式,应该是一个$01$串,异或的过程是不能影响到两个不同的位的,所以我们按位考虑 ...