hdu 5072 两两(不)互质个数逆向+容斥
http://acm.hdu.edu.cn/showproblem.php?pid=5072
求n个不同的数(<=1e5)中有多少组三元组(a, b, c)两两不互质或者两两互质。
逆向求解,把所有不符合的情况求出来用总的情况数减去即可;
先用容斥求出和a[i] 互质的个数num ,然后不符合条件的 就是 num*(n-1-num);
求法见http://blog.csdn.net/u012774187/article/details/40399567
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <queue>
#include <stack>
#include <iostream>
#include <algorithm>
using namespace std;
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define clr0(x) memset(x,0,sizeof(x))
typedef long long LL;
const int maxn = 1e5+5;
int n,p[maxn],cnt[maxn];// 公约数计数
vector<int> q;
int main() {
int _;RD(_);while(_--){
RD(n);
for(int i = 1;i <= n;++i)
RD(p[i]);
clr0(cnt);
for(int i = 1;i <= n;++i){
for(int j = 1;j * j <= p[i];++j)if(p[i]%j == 0){
cnt[j]++;
if(p[i]/j != j)
cnt[p[i]/j]++;
}
}
LL sub = 0;
for(int i = 1;i <= n;++i){
q.clear();
int m = p[i];
for(int j = 2;j * j <= m;++j)if(m%j == 0){
q.push_back(j);
while(m%j == 0)
m/=j;
}
if(m != 1)
q.push_back(m);
int len = q.size();
LL sum = 0;
for(int j = 1;j < (1<<len);++j){
int cnt_fac = 0,u = 1;
for(int k = 0;k < len;++k)if(j & (1<<k)){
cnt_fac++;
u *= q[k];
}
if(cnt_fac & 1) sum += cnt[u];
else sum -= cnt[u];
}
if(sum) sum--;
sub += sum*(n - sum - 1);
}
printf("%I64d\n",(LL)n*(n-1)*(n-2)/6 - sub/2);
}
return 0;
}
hdu 5072 两两(不)互质个数逆向+容斥的更多相关文章
- 51 nod 1439 互质对(Moblus容斥)
1439 互质对 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有n个数字,a[1],a[2],…,a[n].有一个集合,刚开 ...
- C互质个数
C互质个数 Time Limit:1000MS Memory Limit:65536K Total Submit:55 Accepted:27 Description 贝贝.妞妞和康康都长大了,如今 ...
- hdu 1573 X问题 两两可能不互质的中国剩余定理
X问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Desc ...
- hdu 3579 Hello Kiki 不互质的中国剩余定理
Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Probl ...
- hdu 1695 GCD 欧拉函数 + 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K] 和 [L ...
- HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法
地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others) M ...
- HDU 1796 How many integers can you find 【容斥】
<题目链接> 题目大意: 给你m个数,其中可能含有0,问有多少小于n的正数能整除这个m个数中的某一个. 解题分析: 容斥水题,直接对这m个数(除0以外)及其组合的倍数在[1,n)中的个数即 ...
- HDU 1796 How many integers can you find(容斥)题解
思路:二进制解决容斥问题,就和昨天做的差不多.但是这里题目给的因子不是质因子,所以我们求多个因子相乘时要算最小公倍数.题目所给的因数为非负数,故可能有0,如果因子为0就要删除. 代码: #includ ...
- hdu 1573 X问题 (非互质的中国剩余定理)
X问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- Python 环境安装教程(Windows 10)
Python编程语言非常强大,非常容易上手,版本更新也不慢,在win10 x64中兼容性也很好,直接安装不需另外配置,虽然Python2和3有点异同.学习的话选择最新的 python 3.7.1版. ...
- Rsync同步设置的一例
以下文档于2014-12-10更新 先在服务端操作 #wget http://pkgs.repoforge.org/rsync/rsync-3.0.9-2.el6.rfx.x86_64.rpm # ...
- LibreOJ 6004. 「网络流 24 题」圆桌聚餐 网络流版子题
#6004. 「网络流 24 题」圆桌聚餐 内存限制:256 MiB时间限制:5000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数 ...
- kdump 调试手段
kdump是在系统崩溃的时候用来转储内存运行参数的一个工具和服务,打个比方,如果系统一旦崩溃那么正常的内核就没有办法工作了,在这个时候将由kdump产生一个用于capture当前运行信息的内核,该内核 ...
- Vue热更新报错(log.error('[WDS] Errors while compiling. Reload prevented.'))
log.error('[WDS] Errors while compiling. Reload prevented.');中的WDS其实是webpack-dev-serverwebpack的意思,用来 ...
- [C#.Net]启动外部程序的几种常用方法汇总
本文汇总了C#启动外部程序的几种常用方法,非常具有实用价值,主要包括如下几种方法: 1. 启动外部程序,不等待其退出. 2. 启动外部程序,等待其退出. 3. 启动外部程序,无限等待其退出. 4. 启 ...
- KiB和KB的区别
原文链接:http://blog.csdn.net/starshine/article/details/8226320 原来没太注意MB与MiB的区别,甚至没太关注还有MiB这等单位,今天认真了一下, ...
- canvas 实现掉落效果
var canvas = document.getElementById('canvas'); var cxt = canvas.getContext('2d'); cxt.strokeStyle = ...
- 33、iOS10 由于权限问题导致崩溃的大坑
控制台报忠告: This app has crashed because it attempted to access privacy-sensitive data without a usage d ...
- mac挂载ntfs文件系统方法
1.插入磁盘,并查看 zz@pzdeMacBook-Pro:~/Volumes/ntfs16g$ df Filesystem 512-blocks Used Available Capacity iu ...