BZOJ2734 HNOI2012集合选数(状压dp)
完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列。显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并且显然不会有重复。
现在要满足题目要求只需要使在矩阵中选取的数不相邻。显然这可以用状压dp以4^n*m的复杂度搞出来。对于每一个矩阵都这样做一遍再乘起来就可以了。
看起来复杂度非常爆炸。不过冷静分析一下,这样做的复杂度往大了算是Σ4log3(n/i)*log2n,即Σ(n/i)*log34*log2n,也即复杂度不会超过O(nlog2n)。当然远远跑不满。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1000000001
#define N 100010
int n,len[],p[],lg3[N],f[][<<],q[<<],cnt=,ans=;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2734.in","r",stdin);
freopen("bzoj2734.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
p[]=;for (int i=;i<=;i++) p[i]=p[i-]*;
lg3[]=;
for (int i=;i<=n;i++)
{
lg3[i]=lg3[i-];
if (p[lg3[i]+]<=i) lg3[i]++;
}
for (int i=;i<(<<);i++)
{
int x=i,last=;q[++cnt]=i;
while (x)
{
if ((x&)&&last) {cnt--;break;}
last=x&;x>>=;
}
}
q[cnt+]=<<;
for (int i=;i<=n;i++)
if (i%&&i%)
{
int m;
for (m=;(i<<m-)<=n;m++) len[m]=lg3[n/(i<<m-)];
m--;
f[][]=;
for (int k=;k<=m;k++)
for (int j=;q[j]<(<<len[k]);j++)
{
f[k][j]=;
for (int x=;q[x]<(<<len[k-]);x++)
if (!(q[j]&q[x])) f[k][j]=(f[k][j]+f[k-][x])%P;
}
int tot=;
for (int j=;q[j]<(<<len[m]);j++) tot=(tot+f[m][j])%P;
ans=1ll*ans*tot%P;
}
cout<<ans;
return ;
}
BZOJ2734 HNOI2012集合选数(状压dp)的更多相关文章
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- 【BZOJ-2734】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...
- $HNOI2012\ $ 集合选数 状压$dp$
\(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...
- bzoj 2734 [HNOI2012]集合选数 状压DP+预处理
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- [BZOJ2734][HNOI2012] 集合选数(状态压缩+思维)
Description 题目链接 Solution 可以根据条件构造出一个矩阵, 1 3 9 27 81... 2 6 18.... 4 12 36... 这个矩阵满足\(G[i][1]=G[i-1] ...
随机推荐
- HTTP请求header信息讲解
HTTP消息包括客户机向服务器的请求消息和服务器向客户机的响应消息.这两种类型的消息由一个起始行,一个或者多个头域,一个只是头域结束的空行和可选的消息体组成.HTTP的头域包括通用头,请求头,响应头和 ...
- 优化ansible速度
1.开启SSH长连接 ssh_args = -C -o ControlMaster=auto -o ControlPersist=1d \\连接保持一天 2.开启pipelining ansible执 ...
- kubernetes 限制网络带宽 annotation -- 注解 -- 类似 label
1.可以通过给Pod增加 kubernetes.io/ingressbandwidth和 kubernetes.io/egress-bandwidth 这两个annotation来限制Pod的网络带宽 ...
- js 根据相对路径url获得完整路径url
自定义方法 GetPath(url) ///根据相对路径得到完整URL ///strUrl:URL相对地址 var GetPath = function (strUrl) { if (strUrl.t ...
- Swift - 给图片和按钮添加阴影边框
最近比较忙,想要做的事情有很多,能做出来的就只有一部份,我觉得也许是我没有计划和规律造成的,我需要坚持下去,今天写了一个swift2.0给按钮或者图片添加阴影的效果,就当做笔记吧:-) Swift C ...
- centos 64位系统安装
由于centos 64位镜像大于4G,所以U盘装不进去.iso镜像,选择网络安装的方法或者使用一个U盘制作启动盘和一个硬盘来装镜像的方法. 1 网络安装第一步 下载 CentOS 安装 ISO 浏览 ...
- #20155232《网络对抗》Exp9 Web安全基础
20155232<网络对抗>Exp9 Web安全基础 本实践的目标理解常用网络攻击技术的基本原理.Webgoat实践下相关实验. 实验过程 WebGoat Webgoat是OWASP组织研 ...
- VS编程,WPF中两个滚动条 ScrollViewer 同步滚动的一种方法
原文:VS编程,WPF中两个滚动条 ScrollViewer 同步滚动的一种方法 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/ar ...
- js之浅拷贝与深拷贝
浅拷贝:只会复制对象的第一层数据 深拷贝:不仅仅会复制第一层的数据,如果里面还有对象,会继续进行复制,直到复制到全是基本数据类型为止 简单来说,浅拷贝是都指向同一块内存区块,而深拷贝则是另外开辟了一块 ...
- Js_checkbox的互斥
function ck_click(obj) { var ck_20 = document.getElementById("ck_20"); var ck_25 = documen ...