描述

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

Each milking point can "process" at most M (1 <= M <= 15) cows each day.

Write
a program to find an assignment for each cow to some milking machine so
that the distance the furthest-walking cow travels is minimized (and,
of course, the milking machines are not overutilized). At least one
legal assignment is possible for all input data sets. Cows can traverse
several paths on the way to their milking machine.

输入

* Line 1: A single line with three space-separated integers: K, C, and M.

*
Lines 2.. ...: Each of these K+C lines of K+C space-separated integers
describes the distances between pairs of various entities. The input
forms a symmetric matrix. Line 2 tells the distances from milking
machine 1 to each of the other entities; line 3 tells the distances from
machine 2 to each of the other entities, and so on. Distances of
entities directly connected by a path are positive integers no larger
than 200. Entities not directly connected by a path have a distance of
0. The distance from an entity to itself (i.e., all numbers on the
diagonal) is also given as 0. To keep the input lines of reasonable
length, when K+C > 15, a row is broken into successive lines of 15
numbers and a potentially shorter line to finish up a row. Each new row
begins on its own line.

输出

A single line with a single integer that is the minimum possible total distance for the furthest walking cow.

样例输入

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

样例输出

2

题意

给你(K+C)*(K+C)的图,K个牛奶机,每个牛奶机最多供M头牛,一共C头牛,问所有方案中使得距离牛奶机器最远的牛的距离最小

题解

先把牛奶机连汇点T流量M,牛连源点S流量1,牛和牛奶机连流量1,如果C牛都能有饮料机,则说明汇点T=C

然后是怎么连牛和牛奶机的问题,可以知道答案求的是最大值最小

直接二分答案[0,200*(K+C)]

每次把距离<=mid的边加进去,如果T=C,则说明可行,r=mid

否则l=mid

代码

 #include<bits/stdc++.h>
using namespace std; const int maxn=1e5+;
const int maxm=2e5+;
int n,m,S,T;
int deep[maxn],q[];
int FIR[maxn],TO[maxm],CAP[maxm],COST[maxm],NEXT[maxm],tote; void add(int u,int v,int cap)
{
TO[tote]=v;
CAP[tote]=cap;
NEXT[tote]=FIR[u];
FIR[u]=tote++; TO[tote]=u;
CAP[tote]=;
NEXT[tote]=FIR[v];
FIR[v]=tote++;
}
bool bfs()
{
memset(deep,,sizeof deep);
deep[S]=;q[]=S;
int head=,tail=;
while(head!=tail)
{
int u=q[++head];
for(int v=FIR[u];v!=-;v=NEXT[v])
{
if(CAP[v]&&!deep[TO[v]])
{
deep[TO[v]]=deep[u]+;
q[++tail]=TO[v];
}
}
}
return deep[T];
}
int dfs(int u,int fl)
{
if(u==T)return fl;
int f=;
for(int v=FIR[u];v!=-&&fl;v=NEXT[v])
{
if(CAP[v]&&deep[TO[v]]==deep[u]+)
{
int Min=dfs(TO[v],min(fl,CAP[v]));
CAP[v]-=Min;CAP[v^]+=Min;
fl-=Min;f+=Min;
}
}
if(!f)deep[u]=-;
return f;
}
int maxflow()
{
int ans=;
while(bfs())
ans+=dfs(S,<<);
return ans;
}
void init()
{
tote=;
memset(FIR,-,sizeof FIR);
}
int K,C,N,M,a[][];
int main()
{
cin>>K>>C>>M;
N=K+C;
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
{
scanf("%d",&a[i][j]);
if(i!=j&&!a[i][j])a[i][j]=0x3f3f3f3f;
}
for(int k=;k<=N;k++)
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
if(a[i][j]>a[i][k]+a[k][j])
a[i][j]=a[i][k]+a[k][j];
int l=,r=*N;
S=,T=K+C+;
while(r-l>)
{
int mid=(l+r)>>;
init();
for(int i=;i<=K;i++)
add(S,i,M);
for(int i=K+;i<=N;i++)
add(i,T,);
for(int i=;i<=K;i++)
for(int j=K+;j<=N;j++)
if(a[i][j]&&a[i][j]<=mid)
add(i,j,a[i][j]);
int sum=maxflow();
if(sum==C)r=mid;
else l=mid;
}
printf("%d\n",r);
return ;
}

TZOJ 1594 Optimal Milking(二分+最大流)的更多相关文章

  1. POJ 2112 Optimal Milking (二分 + 最大流)

    题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...

  2. POJ2112 Optimal Milking 【最大流+二分】

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 12482   Accepted: 4508 ...

  3. POJ 2112 Optimal Milking (二分+最短路+最大流)

    <题目链接> 题目大意: 有K台挤奶机和C头奶牛,都被视为物体,这K+C个物体之间存在路径.给出一个 (K+C)x(K+C) 的矩阵A,A[i][j]表示物体i和物体j之间的距离,有些物体 ...

  4. POJ 2112 Optimal Milking ( 经典最大流 && Floyd && 二分 )

    题意 : 有 K 台挤奶机器,每台机器可以接受 M 头牛进行挤奶作业,总共有 C 头奶牛,机器编号为 1~K,奶牛编号为 K+1 ~ K+C ,然后给出奶牛和机器之间的距离矩阵,要求求出使得每头牛都能 ...

  5. POJ-2112 Optimal Milking(floyd+最大流+二分)

    题目大意: 有k个挤奶器,在牧场里有c头奶牛,每个挤奶器可以满足m个奶牛,奶牛和挤奶器都可以看成是实体,现在给出两个实体之间的距离,如果没有路径相连,则为0,现在问你在所有方案里面,这c头奶牛需要走的 ...

  6. POJ 2112 Optimal Milking(最大流)

    题目链接:http://poj.org/problem?id=2112 Description FJ has moved his K (1 <= K <= 30) milking mach ...

  7. POJ 2112.Optimal Milking (最大流)

    时间限制:2s 空间限制:30M 题意: 有K台挤奶机(编号1~K),C头奶牛(编号K+1~K+C),给出各点之间距离.现在要让C头奶牛到挤奶机去挤奶,每台挤奶机只能处理M头奶牛,求使所走路程最远的奶 ...

  8. POJ2112 Optimal Milking(最大流)

    先Floyd求牛到机器最短距离,然后二分枚举最长的边. #include<cstdio> #include<cstring> #include<queue> #in ...

  9. poj2112Optimal Milking(二分+最大流)

    链接 floyd求出牛到机器的最短距离,二分距离,小于当前距离的边容量设为1,求出满容量下的最短距离. EK算法 #include <iostream> #include<cstdi ...

随机推荐

  1. WMI Provider Host

    WMI 即 Windows Management Instrumentation(Windows 管理规范)的简写,是 Windows 操作系统的一项内置功能,它为软件和管理脚本提供了一种标准化方法, ...

  2. psutil模块

    python模块之psutil 一.psutil模块 1.介绍 psutil是一个跨平台库(http://pythonhosted.org/psutil/)能够轻松实现获取系统运行的进程和系统利用率( ...

  3. EF 配置MySQL

    添加 mysql dll 引用 WebConfig 配置: 1.先添加connectionstrings,providerName 换成 mysql的 <connectionStrings> ...

  4. pod install vs pod update

    Podfile文件,Podfile.lock文件 Podfile文件:指定依赖库的版本规则 Podfile.lock文件:记录当前工程中使用的依赖库的版本号 pod install会去安装podfil ...

  5. touch修改文件时间戳

    https://blog.csdn.net/lsbhjshyn/article/details/51443304 touch -t 20181011000.01 text.txt

  6. 尚硅谷springboot学习19-日志切换

    查看相关依赖关系,排除相关依赖,引入新的日志依赖 slf4j+log4j的方式: <dependency> <groupId>org.springframework.boot& ...

  7. Linux创建SSH信任关系

    Linux服务器创建信任关系可以解决远程执行命令.远程传输文件多次手工输入的麻烦.可以实现环境一键打包备份. 测试环境 SuSE 手工创建 假设服务器A与B间要建立信任关系.用户想从服务器A免密码登录 ...

  8. android如何快速查看APK包名和activity

    一.通过ADB命令 1.dos进入 2.输入adb shell登录 3.输入dumpsys package | grep eggs(过滤相关包名) 二.通过日志查看包名() 1.连接设备 2.cmd命 ...

  9. 虚拟机安装VMware tools

    选择虚拟机菜单栏--安装VMware tools 2 然后在CentOS系统中弹出的VMware tools窗口中 右击VMwaretools-9.6.0-1294478.tar.gz 解压缩到 3 ...

  10. 注解(Annotation)是什么?