TZOJ 1594 Optimal Milking(二分+最大流)
描述
FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.
Each milking point can "process" at most M (1 <= M <= 15) cows each day.
Write
a program to find an assignment for each cow to some milking machine so
that the distance the furthest-walking cow travels is minimized (and,
of course, the milking machines are not overutilized). At least one
legal assignment is possible for all input data sets. Cows can traverse
several paths on the way to their milking machine.
输入
* Line 1: A single line with three space-separated integers: K, C, and M.
*
Lines 2.. ...: Each of these K+C lines of K+C space-separated integers
describes the distances between pairs of various entities. The input
forms a symmetric matrix. Line 2 tells the distances from milking
machine 1 to each of the other entities; line 3 tells the distances from
machine 2 to each of the other entities, and so on. Distances of
entities directly connected by a path are positive integers no larger
than 200. Entities not directly connected by a path have a distance of
0. The distance from an entity to itself (i.e., all numbers on the
diagonal) is also given as 0. To keep the input lines of reasonable
length, when K+C > 15, a row is broken into successive lines of 15
numbers and a potentially shorter line to finish up a row. Each new row
begins on its own line.
输出
A single line with a single integer that is the minimum possible total distance for the furthest walking cow.
样例输入
2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0
样例输出
2
题意
给你(K+C)*(K+C)的图,K个牛奶机,每个牛奶机最多供M头牛,一共C头牛,问所有方案中使得距离牛奶机器最远的牛的距离最小
题解
先把牛奶机连汇点T流量M,牛连源点S流量1,牛和牛奶机连流量1,如果C牛都能有饮料机,则说明汇点T=C
然后是怎么连牛和牛奶机的问题,可以知道答案求的是最大值最小
直接二分答案[0,200*(K+C)]
每次把距离<=mid的边加进去,如果T=C,则说明可行,r=mid
否则l=mid
代码
#include<bits/stdc++.h>
using namespace std; const int maxn=1e5+;
const int maxm=2e5+;
int n,m,S,T;
int deep[maxn],q[];
int FIR[maxn],TO[maxm],CAP[maxm],COST[maxm],NEXT[maxm],tote; void add(int u,int v,int cap)
{
TO[tote]=v;
CAP[tote]=cap;
NEXT[tote]=FIR[u];
FIR[u]=tote++; TO[tote]=u;
CAP[tote]=;
NEXT[tote]=FIR[v];
FIR[v]=tote++;
}
bool bfs()
{
memset(deep,,sizeof deep);
deep[S]=;q[]=S;
int head=,tail=;
while(head!=tail)
{
int u=q[++head];
for(int v=FIR[u];v!=-;v=NEXT[v])
{
if(CAP[v]&&!deep[TO[v]])
{
deep[TO[v]]=deep[u]+;
q[++tail]=TO[v];
}
}
}
return deep[T];
}
int dfs(int u,int fl)
{
if(u==T)return fl;
int f=;
for(int v=FIR[u];v!=-&&fl;v=NEXT[v])
{
if(CAP[v]&&deep[TO[v]]==deep[u]+)
{
int Min=dfs(TO[v],min(fl,CAP[v]));
CAP[v]-=Min;CAP[v^]+=Min;
fl-=Min;f+=Min;
}
}
if(!f)deep[u]=-;
return f;
}
int maxflow()
{
int ans=;
while(bfs())
ans+=dfs(S,<<);
return ans;
}
void init()
{
tote=;
memset(FIR,-,sizeof FIR);
}
int K,C,N,M,a[][];
int main()
{
cin>>K>>C>>M;
N=K+C;
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
{
scanf("%d",&a[i][j]);
if(i!=j&&!a[i][j])a[i][j]=0x3f3f3f3f;
}
for(int k=;k<=N;k++)
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
if(a[i][j]>a[i][k]+a[k][j])
a[i][j]=a[i][k]+a[k][j];
int l=,r=*N;
S=,T=K+C+;
while(r-l>)
{
int mid=(l+r)>>;
init();
for(int i=;i<=K;i++)
add(S,i,M);
for(int i=K+;i<=N;i++)
add(i,T,);
for(int i=;i<=K;i++)
for(int j=K+;j<=N;j++)
if(a[i][j]&&a[i][j]<=mid)
add(i,j,a[i][j]);
int sum=maxflow();
if(sum==C)r=mid;
else l=mid;
}
printf("%d\n",r);
return ;
}
TZOJ 1594 Optimal Milking(二分+最大流)的更多相关文章
- POJ 2112 Optimal Milking (二分 + 最大流)
题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...
- POJ2112 Optimal Milking 【最大流+二分】
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 12482 Accepted: 4508 ...
- POJ 2112 Optimal Milking (二分+最短路+最大流)
<题目链接> 题目大意: 有K台挤奶机和C头奶牛,都被视为物体,这K+C个物体之间存在路径.给出一个 (K+C)x(K+C) 的矩阵A,A[i][j]表示物体i和物体j之间的距离,有些物体 ...
- POJ 2112 Optimal Milking ( 经典最大流 && Floyd && 二分 )
题意 : 有 K 台挤奶机器,每台机器可以接受 M 头牛进行挤奶作业,总共有 C 头奶牛,机器编号为 1~K,奶牛编号为 K+1 ~ K+C ,然后给出奶牛和机器之间的距离矩阵,要求求出使得每头牛都能 ...
- POJ-2112 Optimal Milking(floyd+最大流+二分)
题目大意: 有k个挤奶器,在牧场里有c头奶牛,每个挤奶器可以满足m个奶牛,奶牛和挤奶器都可以看成是实体,现在给出两个实体之间的距离,如果没有路径相连,则为0,现在问你在所有方案里面,这c头奶牛需要走的 ...
- POJ 2112 Optimal Milking(最大流)
题目链接:http://poj.org/problem?id=2112 Description FJ has moved his K (1 <= K <= 30) milking mach ...
- POJ 2112.Optimal Milking (最大流)
时间限制:2s 空间限制:30M 题意: 有K台挤奶机(编号1~K),C头奶牛(编号K+1~K+C),给出各点之间距离.现在要让C头奶牛到挤奶机去挤奶,每台挤奶机只能处理M头奶牛,求使所走路程最远的奶 ...
- POJ2112 Optimal Milking(最大流)
先Floyd求牛到机器最短距离,然后二分枚举最长的边. #include<cstdio> #include<cstring> #include<queue> #in ...
- poj2112Optimal Milking(二分+最大流)
链接 floyd求出牛到机器的最短距离,二分距离,小于当前距离的边容量设为1,求出满容量下的最短距离. EK算法 #include <iostream> #include<cstdi ...
随机推荐
- linux 不同服务器之间复制文件
----------------------拷贝文件夹---------------------------------------------- 把当前文件夹tempA拷贝到 目标服务器10.127 ...
- Context namespace element 'annotation-config' and its parser class [org.springframework.context.annotation.AnnotationConfigBeanDefinitionParser] are only available on JDK 1.5 and higher
Context namespace element 'annotation-config' and its parser class [org.springframework.context.anno ...
- csredis base usage
Basic usage Whenever possible, server responses are mapped to the appropriate CLR type. using (var r ...
- C++中文件读写的操作
在C++中读读写文件一般指的就是磁盘中的文本文件和二进制文件: 文本文件:以字符序列组成的文件 二进制文件:由二进制组成的文件 读写文件采用ofstream和ifstream文件流,两者可用头文件&l ...
- Android Uri获取真实路径以及文件名的方法【转】
原文地址:https://blog.csdn.net/MikoGodZd/article/details/50979653 在Android 编程中经常会用到uri转化为文件路径 下面是4.4后通过U ...
- 简单全局HOOK拦截大部分键盘消息
前言:学习HOOK中,万一老师讲解HOOK入门教程:http://www.cnblogs.com/del/category/124150.html http://www.cnblogs.com/del ...
- html中,纯数字或纯英文的一串字符超出父容器不会折行显示,如何解决?
这种情况在软件使用过程中一般不会出现,只有测试人员在测试的时候手比较贱会给你弄一个这种数据,当然这也算是bug吧. 如图:“经营范围”的值严重超出父容器长度,并且没有像“服务信息”一样折行显示.这种情 ...
- Structs复习 OGNL
Dominmodel只有传 User.age 类似的这种Structs才能帮创建对象 Dominmodel User里必须有空的构造方法 OGNL:OBJECT GRAPHIC NAVAGATION ...
- java-学习8
方法的声明及使用 public class function { public static void main(String[] args) { printInfo();//调用printInfo( ...
- 前端路由两种模式:hash、history
随着 ajax 的使用越来越广泛,前端的页面逻辑开始变得越来越复杂,特别是spa的兴起,前端路由系统随之开始流行. 从用户的角度看,前端路由主要实现了两个功能(使用ajax更新页面状态的情况下): 记 ...