ES代码总结2
本文部分转载于:
http://www.cnblogs.com/luxiaoxun/p/4869509.html
ElasticSearch的基本用法与集群搭建
ElasticSearch和Solr都是基于Lucene的搜索引擎,不过ElasticSearch天生支持分布式,而Solr是4.0版本后的SolrCloud才是分布式版本,Solr的分布式支持需要ZooKeeper的支持。
这里有一个详细的ElasticSearch和Solr的对比:http://solr-vs-elasticsearch.com/
二、基本用法
Elasticsearch集群可以包含多个索引(indices),每一个索引可以包含多个类型(types),每一个类型包含多个文档(documents),然后每个文档包含多个字段(Fields),这种面向文档型的储存,也算是NoSQL的一种吧。
ES比传统关系型数据库,对一些概念上的理解:
Relational DB -> Databases -> Tables -> Rows -> Columns
Elasticsearch -> Indices -> Types -> Documents -> Fields
从创建一个Client到添加、删除、查询等基本用法:
1、创建Client
public ElasticSearchService(String ipAddress, int port) {
client = new TransportClient()
.addTransportAddress(new InetSocketTransportAddress(ipAddress,
port));
}
这里是一个TransportClient。
ES下两种客户端对比:
TransportClient:轻量级的Client,使用Netty线程池,Socket连接到ES集群。本身不加入到集群,只作为请求的处理。
Node Client:客户端节点本身也是ES节点,加入到集群,和其他ElasticSearch节点一样。频繁的开启和关闭这类Node Clients会在集群中产生“噪音”。
2、创建/删除Index和Type信息
// 创建索引
public void createIndex() {
client.admin().indices().create(new CreateIndexRequest(IndexName))
.actionGet();
} // 清除所有索引
public void deleteIndex() {
IndicesExistsResponse indicesExistsResponse = client.admin().indices()
.exists(new IndicesExistsRequest(new String[] { IndexName }))
.actionGet();
if (indicesExistsResponse.isExists()) {
client.admin().indices().delete(new DeleteIndexRequest(IndexName))
.actionGet();
}
} // 删除Index下的某个Type
public void deleteType(){
client.prepareDelete().setIndex(IndexName).setType(TypeName).execute().actionGet();
} // 定义索引的映射类型
public void defineIndexTypeMapping() {
try {
XContentBuilder mapBuilder = XContentFactory.jsonBuilder();
mapBuilder.startObject()
.startObject(TypeName)
.startObject("properties")
.startObject(IDFieldName).field("type", "long").field("store", "yes").endObject()
.startObject(SeqNumFieldName).field("type", "long").field("store", "yes").endObject()
.startObject(IMSIFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
.startObject(IMEIFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
.startObject(DeviceIDFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
.startObject(OwnAreaFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
.startObject(TeleOperFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
.startObject(TimeFieldName).field("type", "date").field("store", "yes").endObject()
.endObject()
.endObject()
.endObject(); PutMappingRequest putMappingRequest = Requests
.putMappingRequest(IndexName).type(TypeName)
.source(mapBuilder);
client.admin().indices().putMapping(putMappingRequest).actionGet();
} catch (IOException e) {
log.error(e.toString());
}
}
这里自定义了某个Type的索引映射(Mapping),默认ES会自动处理数据类型的映射:针对整型映射为long,浮点数为double,字符串映射为string,时间为date,true或false为boolean。
注意:针对字符串,ES默认会做“analyzed”处理,即先做分词、去掉stop words等处理再index。如果你需要把一个字符串做为整体被索引到,需要把这个字段这样设置:field("index", "not_analyzed")。
详情参考:https://www.elastic.co/guide/en/elasticsearch/guide/current/mapping-intro.html
个人注:
设置mapping信息 这段代码是在ES中的索引库index和类型都已经建立完之后,再向type中插入数据之前设置要插入数据对应的mappings信息...
如果给一个还没有创建的索引库,类型 设置mapping信息 可以参考如下代码:
也可以实现判断一下这个索引库index 或者指定索引库index对应的类型type到底是否存在...再设置mapping信息.
注意:插入数据之后是无法修改索引库对应的mapping信息的...只能删了重新创建. 如下部分我在项目中使用的代码:
public void setMappings(){
//mappings
try {
XContentBuilder mappings = XContentFactory.jsonBuilder();
mappings.startObject()
.startObject(EsUtil.mmobjectTypename)
.startObject("properties")
.startObject("name").field("type","text").endObject()
.startObject("search_createtime").field("type","text").endObject()
.endObject()
.endObject()
.endObject();
boolean exists = transportClient.admin().indices()
.prepareExists(EsUtil.indexname)
.execute().actionGet().isExists();
if(exists){
PutMappingRequest putMappingRequest = Requests.
putMappingRequest(EsUtil.indexname).type(EsUtil.mmobjectTypename)
.source(mappings);
transportClient.admin().indices().putMapping(putMappingRequest).actionGet();
}else{
CreateIndexRequestBuilder prepareCreate = transportClient.admin().indices().prepareCreate(EsUtil.indexname);
prepareCreate.addMapping(EsUtil.mmobjectTypename, mappings).execute().actionGet();
}
} catch (IOException e) {
e.printStackTrace();
}
}
关于设置mappings信息还可以参考如下:
http://stackoverflow.com/questions/23552845/configure-elasticsearch-mapping-with-java-api
3、索引数据
// 批量索引数据
public void indexHotSpotDataList(List<Hotspotdata> dataList) {
if (dataList != null) {
int size = dataList.size();
if (size > 0) {
BulkRequestBuilder bulkRequest = client.prepareBulk();
for (int i = 0; i < size; ++i) {
Hotspotdata data = dataList.get(i);
String jsonSource = getIndexDataFromHotspotData(data);
if (jsonSource != null) {
bulkRequest.add(client
.prepareIndex(IndexName, TypeName,
data.getId().toString())
.setRefresh(true).setSource(jsonSource));
}
} BulkResponse bulkResponse = bulkRequest.execute().actionGet();
if (bulkResponse.hasFailures()) {
Iterator<BulkItemResponse> iter = bulkResponse.iterator();
while (iter.hasNext()) {
BulkItemResponse itemResponse = iter.next();
if (itemResponse.isFailed()) {
log.error(itemResponse.getFailureMessage());
}
}
}
}
}
} // 索引数据
public boolean indexHotspotData(Hotspotdata data) {
String jsonSource = getIndexDataFromHotspotData(data);
if (jsonSource != null) {
IndexRequestBuilder requestBuilder = client.prepareIndex(IndexName,
TypeName).setRefresh(true);
requestBuilder.setSource(jsonSource)
.execute().actionGet();
return true;
} return false;
} // 得到索引字符串
public String getIndexDataFromHotspotData(Hotspotdata data) {
String jsonString = null;
if (data != null) {
try {
XContentBuilder jsonBuilder = XContentFactory.jsonBuilder();
jsonBuilder.startObject().field(IDFieldName, data.getId())
.field(SeqNumFieldName, data.getSeqNum())
.field(IMSIFieldName, data.getImsi())
.field(IMEIFieldName, data.getImei())
.field(DeviceIDFieldName, data.getDeviceID())
.field(OwnAreaFieldName, data.getOwnArea())
.field(TeleOperFieldName, data.getTeleOper())
.field(TimeFieldName, data.getCollectTime())
.endObject();
jsonString = jsonBuilder.string();
} catch (IOException e) {
log.equals(e);
}
} return jsonString;
}
ES支持批量和单个数据索引。
4、查询获取数据
// 获取少量数据100个
private List<Integer> getSearchData(QueryBuilder queryBuilder) {
List<Integer> ids = new ArrayList<>();
SearchResponse searchResponse = client.prepareSearch(IndexName)
.setTypes(TypeName).setQuery(queryBuilder).setSize(100)
.execute().actionGet();
SearchHits searchHits = searchResponse.getHits();
for (SearchHit searchHit : searchHits) {
Integer id = (Integer) searchHit.getSource().get("id");
ids.add(id);
}
return ids;
} // 获取大量数据
private List<Integer> getSearchDataByScrolls(QueryBuilder queryBuilder) {
List<Integer> ids = new ArrayList<>();
// 一次获取100000数据
SearchResponse scrollResp = client.prepareSearch(IndexName)
.setSearchType(SearchType.SCAN).setScroll(new TimeValue(60000))
.setQuery(queryBuilder).setSize(100000).execute().actionGet();
while (true) {
for (SearchHit searchHit : scrollResp.getHits().getHits()) {
Integer id = (Integer) searchHit.getSource().get(IDFieldName);
ids.add(id);
}
scrollResp = client.prepareSearchScroll(scrollResp.getScrollId())
.setScroll(new TimeValue(600000)).execute().actionGet();
if (scrollResp.getHits().getHits().length == 0) {
break;
}
} return ids;
}
这里的QueryBuilder是一个查询条件,ES支持分页查询获取数据,也可以一次性获取大量数据,需要使用Scroll Search。
5、聚合(Aggregation Facet)查询
// 得到某段时间内设备列表上每个设备的数据分布情况<设备ID,数量>
public Map<String, String> getDeviceDistributedInfo(String startTime,
String endTime, List<String> deviceList) { Map<String, String> resultsMap = new HashMap<>(); QueryBuilder deviceQueryBuilder = getDeviceQueryBuilder(deviceList);
QueryBuilder rangeBuilder = getDateRangeQueryBuilder(startTime, endTime);
QueryBuilder queryBuilder = QueryBuilders.boolQuery()
.must(deviceQueryBuilder).must(rangeBuilder); TermsBuilder termsBuilder = AggregationBuilders.terms("DeviceIDAgg").size(Integer.MAX_VALUE)
.field(DeviceIDFieldName);
SearchResponse searchResponse = client.prepareSearch(IndexName)
.setQuery(queryBuilder).addAggregation(termsBuilder)
.execute().actionGet();
Terms terms = searchResponse.getAggregations().get("DeviceIDAgg");
if (terms != null) {
for (Terms.Bucket entry : terms.getBuckets()) {
resultsMap.put(entry.getKey(),
String.valueOf(entry.getDocCount()));
}
}
return resultsMap;
}
Aggregation查询可以查询类似统计分析这样的功能:如某个月的数据分布情况,某类数据的最大、最小、总和、平均值等。
详情参考:https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/java-aggs.html
三、集群配置
配置文件elasticsearch.yml
集群名和节点名:
#cluster.name: elasticsearch
#node.name: "Franz Kafka"
是否参与master选举和是否存储数据
#node.master: true
#node.data: true
分片数和副本数
#index.number_of_shards: 5
#index.number_of_replicas: 1
master选举最少的节点数,这个一定要设置为整个集群节点个数的一半加1,即N/2+1
#discovery.zen.minimum_master_nodes: 1
discovery ping的超时时间,拥塞网络,网络状态不佳的情况下设置高一点
#discovery.zen.ping.timeout: 3s
注意,分布式系统整个集群节点个数N要为奇数个!!
如何避免ElasticSearch发生脑裂(brain split):http://blog.trifork.com/2013/10/24/how-to-avoid-the-split-brain-problem-in-elasticsearch/
即使集群节点个数为奇数,minimum_master_nodes为整个集群节点个数一半加1,也难以避免脑裂的发生,详情看讨论:https://github.com/elastic/elasticsearch/issues/2488
四、Elasticsearch插件
1、elasticsearch-head是一个elasticsearch的集群管理工具:./elasticsearch-1.7.1/bin/plugin -install mobz/elasticsearch-head
2、elasticsearch-sql:使用SQL语法查询elasticsearch:./bin/plugin -u https://github.com/NLPchina/elasticsearch-sql/releases/download/1.3.5/elasticsearch-sql-1.3.5.zip --install sql
github地址:https://github.com/NLPchina/elasticsearch-sql
3、elasticsearch-bigdesk是elasticsearch的一个集群监控工具,可以通过它来查看ES集群的各种状态。
安装:./bin/plugin -install lukas-vlcek/bigdesk
访问:http://192.103.101.203:9200/_plugin/bigdesk/,
4、elasticsearch-servicewrapper插件是ElasticSearch的服务化插件,
在https://github.com/elasticsearch/elasticsearch-servicewrapper下载该插件后,解压缩,将service目录拷贝到elasticsearch目录的bin目录下。
而后,可以通过执行以下语句安装、启动、停止ElasticSearch:
sh elasticsearch install
sh elasticsearch start
sh elasticsearch stop
参考:
https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
http://stackoverflow.com/questions/10213009/solr-vs-elasticsearch
=============================================
java代码操作ES的settings配置信息
ES代码总结2的更多相关文章
- android opengl es代码功能
/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Versi ...
- 最新的JavaScript核心语言标准——ES6,彻底改变你编写JS代码的方式!【转载+整理】
原文地址 本文内容 ECMAScript 发生了什么变化? 新标准 版本号6 兑现承诺 迭代器和for-of循环 生成器 Generators 模板字符串 不定参数和默认参数 解构 Destructu ...
- 最新的ES 5.0路由算法底层实现
http://www.cnblogs.com/bonelee/p/6078947.html 里分析了ES bulk实现,其中路由代码: ShardId shardId = clusterService ...
- ES bulk源码分析——ES 5.0
对bulk request的处理流程: 1.遍历所有的request,对其做一些加工,主要包括:获取routing(如果mapping里有的话).指定的timestamp(如果没有带timestamp ...
- ES批量索引写入时的ID自动生成算法
对bulk request的处理流程: 1.遍历所有的request,对其做一些加工,主要包括:获取routing(如果mapping里有的话).指定的timestamp(如果没有带timestamp ...
- OpenGL ES之GLFW窗口搭建
概述 本章节主要总结如何使用GLFW来创建Opengl窗口.主要包括如下内容: OpenGl窗口创建介绍 GLFW Window版编译介绍 GLFW简单工程源码介绍 OpenGL窗口创建介绍 能用于O ...
- (转)规划从 OpenGL ES 2.0 到 Direct3D 的移植
如果你移植 iOS 或 Android 平台中的游戏,那么你可能需要在 OpenGL ES 2.0 方面进行大量投资.如果你准备将你的图形管道代码库移动到 Direct3D 11 和 Windows ...
- 最新的JavaScript核心语言标准——ES6,彻底改变你编写JS代码的方式!
原文地址 迁移到:http://www.bdata-cap.com/newsinfo/1741515.html 本文内容 ECMAScript 发生了什么变化? 新标准 版本号6 兑现承诺 迭代器和f ...
- 在Android中使用OpenGL ES进行开发第(三)节:绘制图形
一.前期基础知识储备笔者计划写三篇文章来详细分析OpenGL ES基础的同时也是入门关键的三个点: ①OpenGL ES是什么?与OpenGL的关系是什么?——概念部分 ②使用OpenGLES绘制2D ...
随机推荐
- s5-11 距离矢量路由选择协议
距离矢量路由选择(Distance Vector:DV) 每个路由器维护一张表,表中列出了当前已知的到每个目标 的最佳距离,以及为了到达那个目标,应该从哪个接口转发. 距离矢量路由选择(Distanc ...
- DOM中的事件对象和IE事件对象
DOM中的事件对象 IE事件对象 属性/方法 类型 读/写 说明 属性/方法 类型 读/写 说明 bubles Boolean 只读 表明事件是否冒泡 cancleBubble Boolean ...
- windows访问ubuntu的文件
前提:windows电脑和ubuntu电脑要工作在同一个网段! 1.先要安装Samba sudo apt-get install samba openssh-server 2.编译Samba配置文件 ...
- VESA时序与BT1120的区别
在实现内嵌传输的过程中,笔者参考VESA的时序,也就是下图,实现了一个内嵌同步的程序,同步码放在H Back Porch与H Front Porch的后端与前端,但是在传输过程中发现接收端画面不正常. ...
- Camtasia studio8.0破解方法
Camtasia Studio 8.0 注册说明: 1.安装时使用以下信息注册: 用户名: Honorary User密钥: GCABC-CPCCE-BPMMB-XAJXP-S8F6R 或者是 Nam ...
- java.io.IOException: Can't read [\jre\lib\rt.jar]
[proguard] java.io.IOException: Can't read [F:\e\java\jdk1.8.0_101\jre\lib\rt.jar] (Can't process cl ...
- 开始编写Golang代码
介绍 本文主要讲述如何写一个简单的Go包和如何使用golang的工具,如何获取.编译和安装Go的包,以及如何使用go的命令. Go的工具需要将代码按照一定的方式来组织.所以请认真阅读本文. 代码的组织 ...
- ZUFE2480: 神奇的序列 2017-05-12 16:45 39人阅读 评论(0) 收藏
2480: 神奇的序列 时间限制: 4 Sec 内存限制: 256 MB 提交: 31 解决: 15 [提交][状态][讨论版] 题目描述 序列a如下: a[0] = A; a[1] = B; a ...
- hdu 5094 状压bfs+深坑
http://acm.hdu.edu.cn/showproblem.php?pid=5094 给出n*m矩阵 给出k个障碍,两坐标之间存在墙或门,门最多10种,状压可搞 给出s个钥匙位置及编号,相应的 ...
- hdu 5084 前缀和预处理
http://acm.hdu.edu.cn/showproblem.php?pid=5084 给出矩阵M,求M*M矩阵的r行c列的数,每个查询跟前一个查询的结果有关. 观察该矩阵得知,令ans = M ...