HDU3592(差分约束)
World Exhibition
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1754 Accepted Submission(s): 886
Problem Description
There is something interesting. Some like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of X (1 <= X <= 10,000) constraints describes which person like each other and the maximum distance by which they may be separated; a subsequent list of Y constraints (1 <= Y <= 10,000) tells which person dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between person 1 and person N that satisfies the distance constraints.
Input
The next line: Three space-separated integers: N, X, and Y.
The next X lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= N. Person A and B must be at most C (1 <= C <= 1,000,000) apart.
The next Y lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= C. Person A and B must be at least C (1 <= C <= 1,000,000) apart.
Output
Sample Input
4 2 1
1 3 8
2 4 15
2 3 4
Sample Output
Author
Source
- //2017-08-29
- #include <cstdio>
- #include <cstring>
- #include <iostream>
- #include <algorithm>
- #include <queue>
- #include <stack>
- using namespace std;
- const int N = ;
- const int M = ;
- const int INF = 0x3f3f3f3f;
- int head[N], tot;
- struct Edge{
- int to, next, w;
- }edge[M];
- void init(){
- tot = ;
- memset(head, -, sizeof(head));
- }
- void add_edge(int u, int v, int w){
- edge[tot].w = w;
- edge[tot].to = v;
- edge[tot].next = head[u];
- head[u] = tot++;
- }
- int n, m, c;
- bool vis[N];
- int dis[N], cnt[N];
- bool spfa(int s, int n){
- memset(vis, , sizeof(vis));
- memset(dis, INF, sizeof(dis));
- memset(cnt, , sizeof(cnt));
- vis[s] = ;
- dis[s] = ;
- cnt[s] = ;
- deque<int> dq;
- dq.push_back(s);
- int sum = , len = ;
- while(!dq.empty()){
- // LLL 优化
- while(dis[dq.front()]*len > sum){
- dq.push_back(dq.front());
- dq.pop_front();
- }
- int u = dq.front();
- sum -= dis[u];
- len--;
- dq.pop_front();
- vis[u] = ;
- for(int i = head[u]; i != -; i = edge[i].next){
- int v = edge[i].to;
- if(dis[v] > dis[u] + edge[i].w){
- dis[v] = dis[u] + edge[i].w;
- if(!vis[v]){
- vis[v] = ;
- // SLF 优化
- if(!dq.empty() && dis[v] < dis[dq.front()])
- dq.push_front(v);
- else dq.push_back(v);
- sum += dis[v];
- len++;
- if(++cnt[v] > n)return false;
- }
- }
- }
- }
- return true;
- }
- int main()
- {
- std::ios::sync_with_stdio(false);
- //freopen("input.txt", "r", stdin);
- int T, n, x, y;
- cin>>T;
- while(T--){
- init();
- cin>>n>>x>>y;
- int u, v, w;
- while(x--){
- cin>>u>>v>>w;
- add_edge(u, v, w);
- }
- while(y--){
- cin>>u>>v>>w;
- add_edge(v, u, -w);
- }
- if(spfa(, n)){
- if(dis[n] == INF)cout<<-<<endl;
- else cout<<dis[n]<<endl;
- }else cout<<-<<endl;
- }
- return ;
- }
HDU3592(差分约束)的更多相关文章
- poj 3169&hdu3592(差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9687 Accepted: 4647 Descriptio ...
- hdu3592(差分约束) (线性)
题意:一些牛按序号排成一条直线,有两种要求,A和B距离不得超过X,还有一种是A和B距离不得少于Y,问1和N可能的最大距离. 和poj那题一样,就是多了多组数据. #include<cstring ...
- Candies-POJ3159差分约束
Time Limit: 1500MS Memory Limit: 131072K Description During the kindergarten days, flymouse was the ...
- poj3159 差分约束 spfa
//Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...
- ZOJ 2770火烧连营——差分约束
偶尔做了一下差分约束. 题目大意:给出n个军营,每个军营最多有ci个士兵,且[ai,bi]之间至少有ki个士兵,问最少有多少士兵. ---------------------------------- ...
- POJ 2983 Is the Information Reliable? 差分约束
裸差分约束. //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #i ...
- 2014 Super Training #6 B Launching the Spacecraft --差分约束
原题:ZOJ 3668 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3668 典型差分约束题. 将sum[0] ~ sum ...
- POJ 1364 King --差分约束第一题
题意:求给定的一组不等式是否有解,不等式要么是:SUM(Xi) (a<=i<=b) > k (1) 要么是 SUM(Xi) (a<=i<=b) < k (2) 分析 ...
- [USACO2005][POJ3169]Layout(差分约束)
题目:http://poj.org/problem?id=3169 题意:给你一组不等式了,求满足的最小解 分析: 裸裸的差分约束. 总结一下差分约束: 1.“求最大值”:写成"<=& ...
随机推荐
- [LNOI2014]LCA(树剖+线段树)
\(\%\%\% Fading\) 此题是他第一道黑题(我的第一道黑题是蒲公英) 一直不敢开,后来发现是差分一下,将询问离线,树剖+线段树维护即可 \(Code\ Below:\) #include ...
- 01-Linux的基本指令
Linux的基本指令 基础指令(重点) 1.ls指令: 含义:ls(list) 用法1:#ls 含义:列出当前工作目录下的所有文件/文件夹的名称 用法2:#ls 路径 含义:列出指定路径下的所有文件 ...
- Vue2.5开发去哪儿网App 城市列表开发之 兄弟组件间联动及列表性能优化
一, 兄弟组件间联动 1. 点击城市字母,左侧对应显示 给遍历的 字母 添加一个点击事件: Alphabet.vue @click="handleLetterClick" ha ...
- 【tomcat】servlet原理及其生命周期
1.什么是servlet? Servlet(Servlet Applet),全称Java Servlet,是用Java编写的服务器端程序.而这些Servlet都要实现Servlet这个接口.其主要功能 ...
- odoo开发笔记-日期时间相关操作
日期格式化字符串:DATE_FORMAT = "%Y-%m-%d" 日期时间格式字符串:DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" ...
- copy代码的时候,如何去掉代码前边的编号
从网页上拷贝下来的代码前面总有编号,如何去掉! 1.使用正则表达式:在editorplus(notepad++)里按ctrl+h,弹出框里勾选上“正则表达式(regular expression)”, ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 0、学习目标
1. Understand the major trends driving the rise of deep learning.2. Be able to explain how deep lear ...
- c++的动态绑定和静态绑定
为了支持c++的多态性,才用了动态绑定和静态绑定. 1.对象的静态类型:对象在声明时采用的类型.是在编译期确定的. 2.对象的动态类型:目前所指对象的声明.在运行期决定.对象的动态类型可以更改,但是静 ...
- 03-03:springBoot 整合thymeleaf
thymeleaf 语法详解1.变量输出: th:text :在页面中输出某个值 th:value :将一个值放到input标签中的value中.2.判断字符串是否为空 ①:调用内置对象一定要用# ② ...
- Python爬取简书主页信息
主要学习如何通过抓包工具分析简书的Ajax加载,有时间再写一个Multithread proxy spider提升效率. 1. 关键点: 使用单线程爬取,未登录,爬取简书主页Ajax加载的内容.主要有 ...