World Exhibition

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1754    Accepted Submission(s): 886

Problem Description

Nowadays, many people want to go to Shanghai to visit the World Exhibition. So there are always a lot of people who are standing along a straight line waiting for entering. Assume that there are N (2 <= N <= 1,000) people numbered 1..N who are standing in the same order as they are numbered. It is possible that two or more person line up at exactly the same location in the condition that those visit it in a group.

There is something interesting. Some like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of X (1 <= X <= 10,000) constraints describes which person like each other and the maximum distance by which they may be separated; a subsequent list of Y constraints (1 <= Y <= 10,000) tells which person dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between person 1 and person N that satisfies the distance constraints.

 

Input

First line: An integer T represents the case of test.

The next line: Three space-separated integers: N, X, and Y.

The next X lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= N. Person A and B must be at most C (1 <= C <= 1,000,000) apart.

The next Y lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= C. Person A and B must be at least C (1 <= C <= 1,000,000) apart.

 

Output

For each line: A single integer. If no line-up is possible, output -1. If person 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between person 1 and N.
 

Sample Input

1
4 2 1
1 3 8
2 4 15
2 3 4
 

Sample Output

19
 

Author

alpc20
 

Source

 
差分约束系统
建图:
问题询问最大值,因此差分约束求最短路。不等式全部转化成 <= 号。
对于 dis[v] - dis[u] <= w  (u < v),从u到v建立一条权值为w的有向边。
对于 dis[v] - dis[u] >= w  (u < v), 将不等式转换为dis[u] - dis[v] <= -w  (u < v),从v到u建立一条权值为-w的有向边。
 
spfa找最短路。
 //2017-08-29
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack> using namespace std; const int N = ;
const int M = ;
const int INF = 0x3f3f3f3f; int head[N], tot;
struct Edge{
int to, next, w;
}edge[M]; void init(){
tot = ;
memset(head, -, sizeof(head));
} void add_edge(int u, int v, int w){
edge[tot].w = w;
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} int n, m, c;
bool vis[N];
int dis[N], cnt[N]; bool spfa(int s, int n){
memset(vis, , sizeof(vis));
memset(dis, INF, sizeof(dis));
memset(cnt, , sizeof(cnt));
vis[s] = ;
dis[s] = ;
cnt[s] = ;
deque<int> dq;
dq.push_back(s);
int sum = , len = ;
while(!dq.empty()){
// LLL 优化
while(dis[dq.front()]*len > sum){
dq.push_back(dq.front());
dq.pop_front();
}
int u = dq.front();
sum -= dis[u];
len--;
dq.pop_front();
vis[u] = ;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(dis[v] > dis[u] + edge[i].w){
dis[v] = dis[u] + edge[i].w;
if(!vis[v]){
vis[v] = ;
// SLF 优化
if(!dq.empty() && dis[v] < dis[dq.front()])
dq.push_front(v);
else dq.push_back(v);
sum += dis[v];
len++;
if(++cnt[v] > n)return false;
}
}
}
}
return true;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("input.txt", "r", stdin);
int T, n, x, y;
cin>>T;
while(T--){
init();
cin>>n>>x>>y;
int u, v, w;
while(x--){
cin>>u>>v>>w;
add_edge(u, v, w);
}
while(y--){
cin>>u>>v>>w;
add_edge(v, u, -w);
}
if(spfa(, n)){
if(dis[n] == INF)cout<<-<<endl;
else cout<<dis[n]<<endl;
}else cout<<-<<endl;
} return ;
}

HDU3592(差分约束)的更多相关文章

  1. poj 3169&hdu3592(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9687   Accepted: 4647 Descriptio ...

  2. hdu3592(差分约束) (线性)

    题意:一些牛按序号排成一条直线,有两种要求,A和B距离不得超过X,还有一种是A和B距离不得少于Y,问1和N可能的最大距离. 和poj那题一样,就是多了多组数据. #include<cstring ...

  3. Candies-POJ3159差分约束

    Time Limit: 1500MS Memory Limit: 131072K Description During the kindergarten days, flymouse was the ...

  4. poj3159 差分约束 spfa

    //Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...

  5. ZOJ 2770火烧连营——差分约束

    偶尔做了一下差分约束. 题目大意:给出n个军营,每个军营最多有ci个士兵,且[ai,bi]之间至少有ki个士兵,问最少有多少士兵. ---------------------------------- ...

  6. POJ 2983 Is the Information Reliable? 差分约束

    裸差分约束. //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #i ...

  7. 2014 Super Training #6 B Launching the Spacecraft --差分约束

    原题:ZOJ 3668 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3668 典型差分约束题. 将sum[0] ~ sum ...

  8. POJ 1364 King --差分约束第一题

    题意:求给定的一组不等式是否有解,不等式要么是:SUM(Xi) (a<=i<=b) > k (1) 要么是 SUM(Xi) (a<=i<=b) < k (2) 分析 ...

  9. [USACO2005][POJ3169]Layout(差分约束)

    题目:http://poj.org/problem?id=3169 题意:给你一组不等式了,求满足的最小解 分析: 裸裸的差分约束. 总结一下差分约束: 1.“求最大值”:写成"<=& ...

随机推荐

  1. Python基础 --函数的参数

    定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了.对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解 ...

  2. MariaDB 使用正则匹配查询(7)

    MariaDB数据库管理系统是MySQL的一个分支,主要由开源社区在维护,采用GPL授权许可MariaDB的目的是完全兼容MySQL,包括API和命令行,MySQL由于现在闭源了,而能轻松成为MySQ ...

  3. Java计数器之CountDownLatch、CyclicBarrier、Semaphore

    在Java里面有几种可以用于控制线程状态的方法,如CountDownLatch计数器.CyclicBarrier循环栅栏.Sempahore信号量.下面就分别演示下他们的使用方法: CountDown ...

  4. falcon适配ldap密码同步

    问题 小米的openfalcon在使用ldap首次登陆成功后,会在本地创建同名的账号, 这就有个问题当你更新了ldap的密码时,openfalcon是没有同步本地账号密码的功能 二次改造 方便我们de ...

  5. linux设置静态ip地址

    首先我们使用ifconfig查看网卡配置信息 我们进入需要设置的网卡的配置文件 vim /etc/sysconfig/network-scripts/ifcfg-ens33 我们可以看到默认的配置是d ...

  6. Windows + VS2013 + Dlib

    Dlib是一个机器学习的C++库,包含了许多机器学习常用的算法, 而且文档和例子都非常详细. 安装有点类似于opencv,这里我从官网下载dlib-18.17到D盘 1. cmake转VS工程 这里使 ...

  7. Selenium自动化测试Python二:WebDriver基础

    WebDriver基础 欢迎阅读WebDriver基础讲义.本篇讲义将会重点介绍Selenium WebDriver的环境搭建和基本使用方法. WebDriver环境搭建 Selenium WebDr ...

  8. Mac系统配置JDK1.8环境变量

    1.首先我们得知道JDK目录安装在哪里,按照下面的路径我们可以找到JDK的主目录,如下图所示.这里有两个目录是因为本机较早前安装过早期版本的JDK1.8. /Library/Java/JavaVirt ...

  9. 数据库设计 Step by Step (2)——数据库生命周期

    引言:数据库设计 Step by Step (1)得到这么多朋友的关注着实出乎了我的意外.这也坚定了我把这一系列的博文写好的决心.近来工作上的事务比较繁重,加之我期望这个系列的文章能尽可能的系统.完整 ...

  10. salesforce 零基础学习(六十三)Comparable实现Object列表数据的自定义排序

    项目中通常有些需求为需要将某个sObject的数据列表按照某种规则排序显示到前台页面上,但是list上面的sort远远满足不了复杂的功能,此种情况需要自定义比较两个object大小的方法,所以需要创建 ...