World Exhibition

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1754    Accepted Submission(s): 886

Problem Description

Nowadays, many people want to go to Shanghai to visit the World Exhibition. So there are always a lot of people who are standing along a straight line waiting for entering. Assume that there are N (2 <= N <= 1,000) people numbered 1..N who are standing in the same order as they are numbered. It is possible that two or more person line up at exactly the same location in the condition that those visit it in a group.

There is something interesting. Some like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of X (1 <= X <= 10,000) constraints describes which person like each other and the maximum distance by which they may be separated; a subsequent list of Y constraints (1 <= Y <= 10,000) tells which person dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between person 1 and person N that satisfies the distance constraints.

 

Input

First line: An integer T represents the case of test.

The next line: Three space-separated integers: N, X, and Y.

The next X lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= N. Person A and B must be at most C (1 <= C <= 1,000,000) apart.

The next Y lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= C. Person A and B must be at least C (1 <= C <= 1,000,000) apart.

 

Output

For each line: A single integer. If no line-up is possible, output -1. If person 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between person 1 and N.
 

Sample Input

1
4 2 1
1 3 8
2 4 15
2 3 4
 

Sample Output

19
 

Author

alpc20
 

Source

 
差分约束系统
建图:
问题询问最大值,因此差分约束求最短路。不等式全部转化成 <= 号。
对于 dis[v] - dis[u] <= w  (u < v),从u到v建立一条权值为w的有向边。
对于 dis[v] - dis[u] >= w  (u < v), 将不等式转换为dis[u] - dis[v] <= -w  (u < v),从v到u建立一条权值为-w的有向边。
 
spfa找最短路。
 //2017-08-29
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack> using namespace std; const int N = ;
const int M = ;
const int INF = 0x3f3f3f3f; int head[N], tot;
struct Edge{
int to, next, w;
}edge[M]; void init(){
tot = ;
memset(head, -, sizeof(head));
} void add_edge(int u, int v, int w){
edge[tot].w = w;
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} int n, m, c;
bool vis[N];
int dis[N], cnt[N]; bool spfa(int s, int n){
memset(vis, , sizeof(vis));
memset(dis, INF, sizeof(dis));
memset(cnt, , sizeof(cnt));
vis[s] = ;
dis[s] = ;
cnt[s] = ;
deque<int> dq;
dq.push_back(s);
int sum = , len = ;
while(!dq.empty()){
// LLL 优化
while(dis[dq.front()]*len > sum){
dq.push_back(dq.front());
dq.pop_front();
}
int u = dq.front();
sum -= dis[u];
len--;
dq.pop_front();
vis[u] = ;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(dis[v] > dis[u] + edge[i].w){
dis[v] = dis[u] + edge[i].w;
if(!vis[v]){
vis[v] = ;
// SLF 优化
if(!dq.empty() && dis[v] < dis[dq.front()])
dq.push_front(v);
else dq.push_back(v);
sum += dis[v];
len++;
if(++cnt[v] > n)return false;
}
}
}
}
return true;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("input.txt", "r", stdin);
int T, n, x, y;
cin>>T;
while(T--){
init();
cin>>n>>x>>y;
int u, v, w;
while(x--){
cin>>u>>v>>w;
add_edge(u, v, w);
}
while(y--){
cin>>u>>v>>w;
add_edge(v, u, -w);
}
if(spfa(, n)){
if(dis[n] == INF)cout<<-<<endl;
else cout<<dis[n]<<endl;
}else cout<<-<<endl;
} return ;
}

HDU3592(差分约束)的更多相关文章

  1. poj 3169&hdu3592(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9687   Accepted: 4647 Descriptio ...

  2. hdu3592(差分约束) (线性)

    题意:一些牛按序号排成一条直线,有两种要求,A和B距离不得超过X,还有一种是A和B距离不得少于Y,问1和N可能的最大距离. 和poj那题一样,就是多了多组数据. #include<cstring ...

  3. Candies-POJ3159差分约束

    Time Limit: 1500MS Memory Limit: 131072K Description During the kindergarten days, flymouse was the ...

  4. poj3159 差分约束 spfa

    //Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...

  5. ZOJ 2770火烧连营——差分约束

    偶尔做了一下差分约束. 题目大意:给出n个军营,每个军营最多有ci个士兵,且[ai,bi]之间至少有ki个士兵,问最少有多少士兵. ---------------------------------- ...

  6. POJ 2983 Is the Information Reliable? 差分约束

    裸差分约束. //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #i ...

  7. 2014 Super Training #6 B Launching the Spacecraft --差分约束

    原题:ZOJ 3668 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3668 典型差分约束题. 将sum[0] ~ sum ...

  8. POJ 1364 King --差分约束第一题

    题意:求给定的一组不等式是否有解,不等式要么是:SUM(Xi) (a<=i<=b) > k (1) 要么是 SUM(Xi) (a<=i<=b) < k (2) 分析 ...

  9. [USACO2005][POJ3169]Layout(差分约束)

    题目:http://poj.org/problem?id=3169 题意:给你一组不等式了,求满足的最小解 分析: 裸裸的差分约束. 总结一下差分约束: 1.“求最大值”:写成"<=& ...

随机推荐

  1. MySQL 排名统计(常用功能函数)

    select actor_id,@curr_cnt:=cnt as cnt , ,@rank) as rank, @prev_cnt:=@curr_cnt as dummy from( select ...

  2. tkinter之Frame

    tkinter的Frame即容器,在容器内部好像不能再嵌套一个Frame.

  3. 详解使用flask_paginate进行分页

    分页技术好处: 1.分页技术是把数据全部查询出来,然后再进行分页 2.分页技术可以,降低带宽使用,提高访问速度 使用flask_paginate进行分页 1.要使用flask_paginate,首先安 ...

  4. [Umbraco] Data Type的扩展编程

    继续从上面的Data Types的自定义控件说起.前面用到了自定义控件的数据绑定,虽然这使得我们可以调用外部数据了,但这似乎还比较死板,如果再调用其他数据,还得再创建一个控件,那样的话就会出现类似的功 ...

  5. java中result和resultSet

    ResultSet: 1,定义         public interface ResultSet 表示数据库结果集的数据表,通常通过执行查询数据库的语句生成. 2,获得         State ...

  6. 基于GTK+3 开发远程控制管理软件(C语言实现)系列二 Centos7下开发环境搭建

    一.安装gcc gcc-c++ make等编译工具 yum install gcc gcc-c++ kernel-devel 这一步,其实可以不用做,你在安装Centos7的时候,如果选择开发模式安装 ...

  7. solr(四) : springboot 整合 solr

    前言: solr服务器搭起来, 数据导入之后, 就该应用到项目中去了. 那在项目中, 该怎么整合和应用solr呢? 接下来, 就来整合和应用solr 一. 整合 1. 引入jar包 <prope ...

  8. solr(二) : 整合ik-analyzer

    一. 问题: 在使用solr时, 分词器解析中文的时候, 是一个一个字解析的. 这并不是我们想要的结果. 而在lucene中, 使用的中文分词器是 IKAnalyzer. 那么在solr里面, 是不是 ...

  9. JavaScript对象Object

    <script> var obj = new Object(); var obj2 = {}; obj2.firstName = "wang"; obj2.lastNa ...

  10. Ansible工作流程详解

    1:Ansible的使用者 ------>Ansible的使用者来源于多种维度,(1):CMDB(Configuration Management Database,配置管理数据库),CMDB存 ...