【365】拉格朗日乘子法与KKT条件说明
自己总结的规律
- 梯度为0, 其实就是说明里面每一个参数的偏导数都为0.
- 拉格朗日乘子法是对于等式约束.
- KKT条件是针对不等式约束条件.
拉格朗日乘子法结论
KKT条件
- 根据左图, 此时的最小值在$f$函数的最小值点取得, 因此 $\mu_j=0$, 此时$h_j ≤0$
- 根据右图, 此时的最小值在两者相切的地方取得, 因此 $\mu_j≥0$, 此时$h_j =0$
参考: 马同学博客~
按照相应的相切概念会得到下面的式子,即两者具有等比例的剃度值。
$$\nabla f(x,y)+\lambda \nabla g(x,y)=0 \tag{1}$$
如何上面的式子转为拉格朗日乘子法的一般形式,即
$$\mathcal{L}(x,y,\lambda)=f(x,y)+\lambda \cdot g(x,y) \tag{2}$$
并且是对于三个变量的偏导数为0,下面我从(1)到(2)的理解.
由(1)可得
$\nabla_x f(x,y)+\lambda \nabla_x g(x,y)=0$
$\nabla_y f(x,y)+\lambda \nabla_y g(x,y)=0$
即
$\nabla_x (f(x,y)+\lambda\nabla_x g(x,y))=\nabla_x\mathcal{L}(x,y,\lambda)=0 \tag{a}$
$\nabla_y (f(x,y)+\lambda\nabla_y g(x,y))=\nabla_y\mathcal{L}(x,y,\lambda)=0 \tag{b}$
而下面的式子等于0则限制了$g(x,y)=0$
$\nabla_\lambda\mathcal{L}(x,y,\lambda)=g(x,y)=0 \tag{c}$
也就是说明,(2)式在(a)(b)(c)三个式子下可以达到(1)式的效果.此时存在下面的表达式,所以等价,两者有一样的极值.
$$\mathcal{L}(x,y,\lambda)=f(x,y)$$
【365】拉格朗日乘子法与KKT条件说明的更多相关文章
- 拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题
参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原 ...
- 关于拉格朗日乘子法与KKT条件
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...
- 【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法
目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其 ...
- 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...
- 装载:关于拉格朗日乘子法与KKT条件
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...
- 约束优化方法之拉格朗日乘子法与KKT条件
引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT ...
- 拉格朗日乘子法以及KKT条件
拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题.他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题. 其中,利用拉格朗日乘子法 ...
- 拉格朗日乘子法与KKT条件
拉格朗日乘子法 \[min \quad f = 2x_1^2+3x_2^2+7x_3^2 \\s.t. \quad 2x_1+x_2 = 1 \\ \quad \quad \quad 2x_2+3x_ ...
- 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题
1 前言 拉格朗日乘子法(Lagrange Multiplier) 和 KKT(Karush-Kuhn-Tucker) 条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...
随机推荐
- POI实现数据导入功能
一.导入过程(基本就是导出的逆向过程) 1.存在一个包含数据的Excel文件 2.将文件作为参数传到服务器 3.服务器解析文件,并将数据封装成实体对象 4.将对象持久化更新到数据库 5.刷新页面导入成 ...
- Linux coredump 的打开和关闭
(转载自 http://blog.sina.com.cn/s/blog_6b3765230100lazj.html) ulimit -c 输出如果为0,则说明coredump没有打开 ulimit - ...
- js之DOM
DOM对象 什么是HTML DOM HTML Document Object Model(文档对象模型) HTML DOM 定义了访问和操作HTML文档的标准方法 HTML DOM 把 HTML ...
- CS229 6.5 Neurons Networks Implements of Sparse Autoencoder
sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoen ...
- FastDFS+Nginx+fastdfs-nginx-module集群搭建
一.实验环境说明 操作系统: Centos 6.6 x64 FastDFS 相关版本: fastdfs-5.05 fastdfs-nginx-module-v1.16 libfastcommon-v1 ...
- Fragment onActivityResult提前响应,startActivityForResult执行后立即响应onActivityResult的解决方法
找不到病根真是让人愁白了头: 今天写了一个startActivityForResult,开启一个Activity并拿到返回的结果,但是startActivityForResult刚走,onActivi ...
- Could not resolve all files for configuration;Andriod在build.gradle添加compile files()报错
在build.gradle中添加个 compile files('libs/alipaySdk-20170922.jar') 就一直报这个错误 Error:Could not resolve all ...
- 微信小程序如何引用其他js文件
1.我们先建立一个common.js文件,在common.js编写我们的程序, function myfunc() { console.log("myfunc....");} mo ...
- 关于text-align和text-align-last
很多人都用过text-align,基本上也比较熟悉这个属性. text-align: left; // 左对齐 text-align: right; // 右对齐 text-align: center ...
- Linux NTP
1.Server 2.QuickStart last 1.Server 0.cn.pool.ntp.org 1.cn.pool.ntp.org 2.cn.pool.ntp.org 3.cn.pool. ...