这是一道非常有意思的题目

Description

  致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安。我们
将H村抽象为一维的轮廓。如下图所示 我们可以用一条山的上方轮廓折线(x1, y1), (x2, y2), …. (xn, yn)来描
述H村的形状,这里x1 < x2 < …< xn。瞭望塔可以建造在[x1, xn]间的任意位置, 但必须满足从瞭望塔的顶端可
以看到H村的任意位置。可见在不同的位置建造瞭望塔,所需要建造的高度是不同的。为了节省开支,dadzhi村长
希望建造的塔高度尽可能小。请你写一个程序,帮助dadzhi村长计算塔的最小高度。

Input

  第一行包含一个整数n,表示轮廓折线的节点数目。接下来第一行n个整数, 为x1 ~ xn. 第三行n个整数,为y1
 ~ yn。

Output

  仅包含一个实数,为塔的最小高度,精确到小数点后三位。

Sample Input

【输入样例一】
6
1 2 4 5 6 7
1 2 2 4 2 1
【输入样例二】
4
10 20 49 59
0 10 10 0

Sample Output

【输出样例一】
1.000
【输出样例二】
14.500

HINT

N ≤ 300,输入坐标绝对值不超过106,注意考虑实数误差带来的问题。

题解

经过研究,我们发现能看见一段山坡的是一个半平面

于是半平面交

我们得到了一个上凸壳和一段折线,求这两个玩意水平的最短距离

这个嘛,我们发现一定是在上凸壳或者折线的顶点处最小

然后明显一个点对应的一段线是单调的。

问题解决

虽然这题只有300

但是这个能做300000

#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<map>
#include<vector>
#include<set>
#define il inline
#define re register
#define linf 1e15
using namespace std;
const int N=;
typedef double db;
int n,m,L,R,p;
db ans=1e60;
struct P{db x,y;} a[N],c[N],t,tt;
struct line{P a,b;db slop;} l[N],q[N];
il P operator-(P a,P b){
return (P){a.x-b.x,a.y-b.y};
}
il db operator*(P a,P b){
return a.x*b.y-a.y*b.x;
}
il bool cmp(line a,line b){
if(a.slop!=b.slop) return a.slop<b.slop;
return (a.b-a.a)*(b.b-a.a)>;
}
il P inter(line a,line b){
double k1,k2,t;
k1=(b.b-a.a)*(a.b-a.a);
k2=(a.b-a.a)*(b.a-a.a);
t=k1/(k1+k2);P ans;
ans.x=b.b.x+(b.a.x-b.b.x)*t;
ans.y=b.b.y+(b.a.y-b.b.y)*t;
return ans;
}
il bool jud(line a,line b,line t){
P p=inter(a,b);
return (p-t.a)*(t.b-t.a)>;
}
il void print(P a){
printf("(%lf,%lf)\n",a.x,a.y);
}
int main(){
scanf("%d",&n);m=n-;
for(int i=;i<=n;i++) scanf("%lf",&a[i].x);
for(int i=;i<=n;i++) scanf("%lf",&a[i].y);
for(int i=;i<n;i++){
l[i].a=a[i];
l[i].b=a[i+];
}
l[++m]=(line){(P){a[].x,1e7},a[]};
l[++m]=(line){a[n],(P){a[n].x,1e7}};
for(int i=;i<=m;i++)
l[i].slop=atan2(l[i].b.y-l[i].a.y,l[i].b.x-l[i].a.x);
sort(l+,l+m+,cmp);
L=;R=;
q[]=l[];q[]=l[];
for(int i=;i<=m;i++){
while(L<R&&jud(q[R-],q[R],l[i])) R--;
while(L<R&&jud(q[L],q[L+],l[i])) L++;
q[++R]=l[i];
}
while(L<R&&jud(q[R-],q[R],q[L])) R--;
while(L<R&&jud(q[L],q[L+],q[R])) L++;
for(int i=L;i<R;i++)
c[++p]=inter(q[i],q[i+]);
for(int i=,j=;i<=n;i++){
while(j<p&&(!(c[j].x<=a[i].x&&a[i].x<=c[j+].x))) j++;
if(j<p){
tt=(P){a[i].x,-};
t=inter((line){tt,a[i]},(line){c[j],c[j+]});
ans=min(ans,t.y-a[i].y);
}
}
for(int i=,j=;i<=p;i++){
while(j<n&&(!(a[j].x<=c[i].x&&c[i].x<=a[j+].x))) j++;
if(j<n){
tt=(P){c[i].x,-};
t=inter((line){tt,c[i]},(line){a[j],a[j+]});
ans=min(ans,c[i].y-t.y);
}
}
printf("%.3lf",ans);
return ;
}

bzoj1038的更多相关文章

  1. 【半平面交】bzoj1038 [ZJOI2008]瞭望塔

    http://m.blog.csdn.net/blog/qpswwww/44105605 #include<cstdio> #include<cmath> #include&l ...

  2. 【bzoj1038】瞭望塔

    [bzoj1038]瞭望塔 题意 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如下图所示 我们可以用一条山的上方轮廓折 ...

  3. 【BZOJ1038】[ZJOI2008]瞭望塔 半平面交

    [BZOJ1038][ZJOI2008]瞭望塔 Description 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如 ...

  4. bzoj1038: [ZJOI2008]瞭望塔

    Description 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如下图所示 我们可以用一条山的上方轮廓折线(x1, ...

  5. bzoj1038(半平面交)

    #include<iostream> #include<cstring> #include<cmath> #include<cstdio> #inclu ...

  6. bzoj千题计划126:bzoj1038: [ZJOI2008]瞭望塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1038 本题可以使用三分法 将点按横坐标排好序后 对于任意相邻两个点连成的线段,瞭望塔的高度 是单峰函 ...

  7. BZOJ1038 瞭望塔

    学习了半平交面. 我这里写的是训练指南中的双端队列,每次判断是否删去更优然后更新. 看hzwer中有一处不太明白就是为何要将两段加入队列 后来对拍出错才知道是因为精度,当两线重合时他们叉积返回值是一个 ...

  8. 【bzoj1038】瞭望塔 半平面交

    题目描述 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如下图所示 我们可以用一条山的上方轮廓折线(x1, y1), ( ...

  9. 【BZOJ1038】【ZJOI2008】瞭望塔 [模拟退火]

    瞭望塔 Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 致力于建设全国示范和谐小村庄的H村村 ...

随机推荐

  1. ASP.NET Core中,UseDeveloperExceptionPage扩展方法会吃掉异常

    在ASP.NET Core中Startup类的Configure方法中,有一个扩展方法叫UseDeveloperExceptionPage,如下所示: // This method gets call ...

  2. [HNOI2012]矿场搭建 BZOJ2730 点双+结论

    Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一 ...

  3. WPF编程,C#中对话框自动关闭的一种方法。

    原文:WPF编程,C#中对话框自动关闭的一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/article/details/8 ...

  4. Luogu P1273 有线电视网

    最近写DP写得比较多了 但是POJ上的题目太傻比了而且不想看英文的题面,然后就在Luogu的试炼场里找了一个DP EX专题写了一下(大概3days吧,一天一题差不多) 这是一道比较简单的DP 话说树形 ...

  5. EZ 2018 05 04 NOIP2018 模拟赛(十二)

    这次的试卷应该是激励我们一下的,链接 然后大家的分数就都很高,然后我就210被一群秒A T2的240大佬爆踩 掉了5rating但Rank竟然发杀了 X_o_r dalao && YZ ...

  6. Spring MVC统一异常处理

    实际上Spring MVC处理异常有3种方式: (1)一种是在Controller类内部使用@ExceptionHandler使用注解实现异常处理: 可以在Controller内部实现更个性化点异常处 ...

  7. 记录下安装ES过程中遇到的错误及解决

    1.集群配置 需要修改 cluster.name .node.name .network.host: 0.0.0.0[此处默认localhost].http.port: 9200 只要集群名相同,且机 ...

  8. java十年,需要学会的Java开发体系

    阿里十年,只剩下这套Java开发体系了,链接:https://www.jianshu.com/p/ca6c4a73aac9

  9. LABVIEW串口通信基础

    写这一篇串口通信基础的契机是最近刚刚完成一个温箱的仪器控制程序,LABVIEW通过串口与温箱单片机通讯,我打算将过程中遇到的一些问题和收获列在这里方便有需求的网友比对.寻找答案. 学LABVIEW时间 ...

  10. linux内核分析第二周

    网易云课堂linux内核分析第二周 20135103                王海宁 <Linux内核分析>MOOC课程http://mooc.study.163.com/cours ...